
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2009

Parallel methods for short read assembly
Benjamin Grant Jackson
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Electrical and Computer Engineering Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Jackson, Benjamin Grant, "Parallel methods for short read assembly" (2009). Graduate Theses and Dissertations. 10704.
https://lib.dr.iastate.edu/etd/10704

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F10704&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F10704&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F10704&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F10704&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F10704&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F10704&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=lib.dr.iastate.edu%2Fetd%2F10704&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/10704?utm_source=lib.dr.iastate.edu%2Fetd%2F10704&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Parallel methods for short read assembly

by

Benjamin Grant Jackson

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Engineering

Program of Study Committee:
Srinivas Aluru, Major Professor

Patrick S. Schnable
David Fernandez-Baca

Suraj C. Kothari
Joseph A. Zambreno

Iowa State University

Ames, Iowa

2009

Copyright c© Benjamin Grant Jackson, 2009. All rights reserved.

www.manaraa.com

ii

DEDICATION

I dedicate this work to my wife Adrianna; her support and patience were essential to my

sanity during its completion.

www.manaraa.com

iii

TABLE OF CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . viii

LIST OF ALGORITHMS . xi

CHAPTER 1. INTRODUCTION . 1

1.1 Sequencing Technologies . 5

1.1.1 Chain Termination . 7

1.1.2 Pyrosequencing . 8

1.1.3 Reversible-Terminator Sequencing . 9

1.1.4 Sequencing by Ligation . 10

1.2 The Sequence Assembly Problem . 11

1.2.1 The Overlap-Layout-Consensus Method 12

1.2.2 Approaches Using Graph Traversal . 16

1.2.3 Hierarchical Sequencing . 18

1.3 Method and Software Organization . 19

1.3.1 Serial Implementation . 22

1.3.2 Parallel Implementation . 22

1.4 Contributions . 27

CHAPTER 2. CONSTRUCTION AND COMPACTION OF k-STRING

GRAPHS . 29

2.1 The Bidirected de Bruijn Graph . 29

2.2 k-String graph . 34

www.manaraa.com

iv

2.3 Relatives of the k-String Graph . 35

2.4 De Bruijn Graph Construction and Representation 36

2.5 List Ranking . 38

2.5.1 List Ranking Transformation . 39

2.5.2 Undirected List Ranking . 40

2.6 k-String Graph Construction . 46

2.7 Sequencing Errors . 49

2.7.1 Thresholding . 51

2.7.2 Graph Editing . 54

2.7.3 An Iterative Algorithm . 58

2.8 Endpoint Merging . 59

2.9 Contigs as Edges . 64

CHAPTER 3. GRAPH SIMPLIFICATION AND TRAVERSAL 66

3.1 Transcriptome Assembly using Graph Simplification 67

3.1.1 The Conflict Graph . 69

3.1.2 Heuristic Graph Simplification . 71

3.1.3 Graph Reduction on Independent Sets 73

3.1.4 Graph Simplificaiton in EULER-DB . 82

3.2 Genome Assembly using Graph Traversal . 82

3.2.1 Exact Traversal Constraints . 83

3.2.2 Paired Read Constraints . 84

3.2.3 Generating Exact and Approximate Distance Constraints 88

3.2.4 Graph Traversal . 93

CHAPTER 4. EXPERIMENTAL RESULTS 96

4.1 Software Implementation . 96

4.2 Experimental Data Acquisition and Preparation 98

4.2.1 Data Trimming . 99

4.3 Transcriptome Assembly . 100

www.manaraa.com

v

4.4 Genome Assembly . 102

4.4.1 Synthetic Data . 102

4.4.2 Experimental Data . 103

4.5 Performance Results . 104

CHAPTER 5. CONCLUSION . 107

BIBLIOGRAPHY . 111

ACKNOWLEDGEMENTS . 119

www.manaraa.com

vi

LIST OF TABLES

1.1 A comparison of short sequence assemblers by functionality as has been

described in the cited papers. 13We do not record parallelism at the node

level (effectively using both cores in a dual-core processor), but rather large scale

parallelism across nodes. 14The ALLPATHS assembler requires that the data contain

exactly three types of paired reads: a short insert length (for example 250 bases), a

medium insert length (for example 2000 bases), and a long insert length (for example

10,000 bases). 28

4.1 The effect of varying k on graph size. We show the number of nodes in

the initial de Bruijn graph, the number of edges in the initial de Bruijn

graph, the number of compacted edges in the k-string graph, and the

number of reduced edges in the k-string graph, after graph simplification.101

4.2 Assembly quality for five organisms. The first group shows results for

sequences using Protocol I, as described in the text. The second group

was assembled from data matching Protocol II. In order, we show the

size of the genome in megabases; the maximum, n50, n75, and n90

lengths, all in kilobases; the number of contigs with length > 10Kb, the

number of misassemblies per megabase, and percentage of the genome

covered by these contigs at > 99.9% identity. 103

4.3 A comparison of short sequence assemblers, using a 300x coverage Illu-

mina data set with read length 36 and insertion length 200. 104

www.manaraa.com

vii

4.4 Running time of the parallel assembler in seconds, broken down by

stage of the algorithm. From left to right the columns are: p: the

number of processors, Init: initialization time, from program startup

to initial read, Read: read the (k + 1)-molecules from the data file,

Con: construct graph tuples and compact edges in the graph, Wr:

write graph information, Clean: perform error correction by graph

editing, Wr: write graph information, Pairs: read paired information

and create clusters, Wr: write clusters, Tot: total running time, -Wr:

total running time without write phases, and Per: perfect speedup. . 105

www.manaraa.com

viii

LIST OF FIGURES

1.1 The chemical structure of DNA. Molecules are labeled with their com-

ponent elements: phosphorous (P), oxygen (O), hydrogen(H), nitro-

gen(N), and carbon(C). Covalent bonds are shown as solid lines in the

graph, while hydrogen bonds are shown as dashed lines. We highlight

a single nucleotide in the upper left. We show in the figure the double

stranded nature of DNA, the complementary bases Adenine, Cytosine,

Guanine, and Thymine, and the strands’ opposite orientations. 2

1.2 An overview of the shotgun sequencing process. In (a) we show many

copies of the target genome. These are randomly sheared in (b). In (c)

we show the duplication of a single sheared fragment. In (d) we show

reading the ends of a fragment. 6

1.3 The mapping of each two base motif to the four dyes used in the SOLiD

2 system. 10

1.4 The overlap graph for BAC 238O23 from the Zea mays genome se-

quencing project, with nodes drawn using a force directed graph layout

algorithm. Unitigs are long consistent chains of overlaps in the graph. 13

1.5 A diagram of the application of a permutation and transformation of

data. We organize our method around this computational concept. . . 20

1.6 A diagram of the bucket-emit logic when combining two collections. . . 21

www.manaraa.com

ix

1.7 A diagram of the regular sample sort algorithm. We show in a) the

original data, distributed between 4 processors. In b) we show the result

of sorting the data locally. In c) we gather samples from each processor

to a single location. In d) we choose splitters and broadcast these to

every processor. In e) we divide the locally sorted data according to

the splitters, sending and receiving between all processors using a many-

to-many collective communication primitive. In f) we merge the data

received in d). 24

1.8 A diagram of the butterfly pattern sometimes used when implementing

the prefix-sum computation on parallel machines. Each column corre-

sponds to a processor, and each row corresponds to a communication

step the in pattern. Edges correspond to communication between pro-

cessors. 26

2.1 The four ways in which nodes are connected in the bidirected de Bruijn

graph, with the edges labeled with the initial characters in the bidi-

rected k-string graph (before edge compaction). 31

2.2 An example genome with repeats and the resulting bidirected k-string

graph. The genome is given as a sequence of maximal repeat or unique

regions, each labeled with a letter from the English alphabet. We draw

the graph nodes as gray circles and label the edges using the corre-

sponding letters. 35

2.3 The recursive sparse ruling set algorithm. We show in a) the initial

problem. We show in b) the recursive formulation, with the thickness

of dashed lines corresponding to the distance between unmarked nodes

and adjacent marked nodes. We show in c) the recursive problem, with

weights given as line thickness. A base case is shown. 41

www.manaraa.com

x

2.4 Contour lines for Ct and Et when plotted against c and t. We plot

log10 Ct = {−2,−1, 0, and 2} for genome length 300Mb, read length of

40bp, 1% error, and k=30. We also plot log10 Et = {−2,−1, 0, and 2}

for a hypothetical genome repeat decomposition, superimposed against

Ct. We show in the upper left a plot of Ct for 300Mb of unique sequence.

We show in the upper right a plot for 60Mb of sequence repeated twice.

We show in the lower left a plot for 1Mb of sequence repeated 4 times.

Finally, we show in the lower right a plot for 20Kb repeated 30 times.

These plots indicate that with 1% sequencing error rate, 30-mers can be

differentiated using a simple threshold method at 250-fold to 300-fold

coverage. 53

2.5 Motifs used to identify errors with coverage indicated by line weight.

From left to right: a tip, a bubble, and a spurious link. 55

2.6 The process of merging endpoints in the graph that uniquely overlap

by less than k−1 characters for k = 8. a) Two endpoints to be merged.

b) The suffix-prefix overlap. c) We pad one of the two edges with X’s.

d) We merge edges. e) The ranks of characters used to clean the chain.

f) The result of the merger. 60

3.1 Three operations used in sequence assembly by graph simplification.

We show the edge labels as characters in the initial motif, and the

resulting edge labels as a concatenation of these characters. We show a

Y-to-V reduction on the left. We show a loop reduction in the center.

We show an I reduction on the right. 70

3.2 Two examples of situations in which the application of loop reduction

produces a misassembly. On the left, we show an example genome,

with edges labeled with strings. On the right, we show an example

transcriptome with two alternative splicings of genes. 71

www.manaraa.com

xi

3.3 We show the coverage matching graph simplification operation, followed

by the Y-to-V operation, to demonstrate the iterative nature of graph

simplification. Line thickness corresponds to coverage. 73

3.4 Some examples of path extension candidates, with (k + 1)-pair clusters

for two fragment types shown. In a), we show prototypical strong cluster

support. In b), we show (k + 1)-pair cluster support for the extension

of a repeat that occurs twice in quick succession in the path. In c), we

show an obvious example of lack of support. Finally, in d) we show an

example of lack of strong support for the extension, even though the

cluster overlaps with expected distance constraints. 87

4.1 Measurement of errors in Illumina data from a single raw Illumina run.

For each position in the read, we chart the observed error under three

conditions. We chart the percentage of ambiguous calls under the con-

dition there is an ambiguous call earlier in the sequence as the top

line. We chart the percentage of ambiguous calls for all sequences as

the middle line. We chart the percentage of ambiguous calls under the

condition that there are no ambiguous calls in earlier positions as the

bottom line. 100

www.manaraa.com

xii

List of Algorithms

1 : Extract . 37

2 : SumCount . 37

3 : Read . 37

4 : GenerateGraphTuple . 38

5 : GenerateGraph . 38

6 : EdgesToAdjacencies . 40

7 : AdjacenciesToListRanking . 40

8 : GenerateListMessages . 42

9 : PropogateListMessages . 43

10 : GetRecursiveProblem . 43

11 : Integrate . 44

12 : QueryMarkedNodes . 44

13 : ReturnListInformation . 44

14 : ComputeRank . 45

15 : ListRank(L) . 45

16 : SetRank . 47

17 : ExtractToplogy . 48

18 : AssignAdjacencyInfo . 49

19 : ExcangeAdjacencyInfo . 49

20 : ExtractChains . 50

21 : GenerateStringGraph . 50

22 : RemoveTips(Au) . 56

www.manaraa.com

xiii

23 : RemoveSingletons(Au) . 56

24 : RemoveBubbles(Au) . 57

25 : RemoveSpuriousLinks(Au) . 57

26 : GetDeletions . 58

27 : CleanErrors . 58

28 : GetEndpoint . 59

29 : GetEndpointMoleculeID . 60

30 : GetEndpointMolecule . 61

31 : GenerateEndpointPairs . 61

32 : CheckEndpointU . 62

33 : CheckEndpointV . 62

34 : QueryNeighborhood . 63

35 : KeepMinimum . 63

36 : MergeEndpointPair . 63

37 : CleanChains . 64

38 : MergeEndpoints . 64

39 : Delete(edge e) . 75

40 : Delete(edge e) . 75

41 : Connect(edge m, edge d, pad p) . 75

42 : Connect(edge m, edge d, pad p) . 76

43 : UpdateTopology . 76

44 : UpdateChains . 77

45 : AddressNeighbors<Op> . 78

46 : GetManipulation<Op> . 78

47 : ModifyGraph<Op> . 79

48 : ReduceGraph . 79

49 : Check<YtoV>(Au) . 79

50 : Check<Loop>(Au) . 79

www.manaraa.com

xiv

51 : Check<I>(Au) . 79

52 : Check<Coverage>(Au) . 80

53 : Process<YtoV>(Au) . 80

54 : Process<Loop>(Au) . 81

55 : Process<I>(Au) . 81

56 : Process<Coverage>(Au) . 81

57 : GeneratePairs . 89

58 : GetFirstID . 89

59 : GetSecondID . 90

60 : GetFirstPosition . 90

61 : GetConstraint . 90

62 : ReduceConstraints . 91

63 : ReduceConstraintsII . 92

64 : ReadPairs . 92

www.manaraa.com

1

CHAPTER 1. INTRODUCTION

This work is on the parallel de novo assembly of genomic sequences from short sequence

reads. In it, we advance the field of short sequence assembly in a number of ways. First, we

extend models and ideas proposed and tested with small genomes on serial machines to large-

scale distributed memory parallel machines. Second, we present novel ideas for assembly that

are especially suited to reconstruction of very large genomes on these machines. Additionally,

we present the first assembler that specifically takes advantage a variable number of fragment

sizes or insert lengths while still working well for data with one insert length.

In describing this work, we do not assume that the reader has a background in biology.

While we assume a familiarity with computer science,1 we do not expect a specific background

in parallel processing. In our software architecture, we encapsulate the parallel implementation

details in a few high level computational concepts. Ultimately these concepts require a parallel

mindset, but readers interested more in the general method may skip the implementation

details.

As a biological background is not assumed, we will start our discussion with a brief descrip-

tion of DNA. The deoxyribonucleic acid molecule, as shown in Fig. 1.1, is a double-stranded

molecule, each strand a chain (or polymer) of simpler molecules known as nucleotides. A

nucleotide consists of a sugar-phosphate backbone with an attached base taken from the set

{Adenine, Guanine, Cytosine, Thymine}, as we highlight in the figure. As the base differen-

tiates each nucleotide, a nucleotide is often referred to by its base. In fact, we think of the

polymer as a string over the alphabet Σ = {a, c, g, t}, and the DNA molecule as two such

strings.

1This background would include an understanding of the design and analysis of algorithms, complexity
theory, and discrete mathematics.

www.manaraa.com

2

Figure 1.1 The chemical structure of DNA. Molecules are labeled with
their component elements: phosphorous (P), oxygen (O), hy-
drogen(H), nitrogen(N), and carbon(C). Covalent bonds are
shown as solid lines in the graph, while hydrogen bonds are
shown as dashed lines. We highlight a single nucleotide in the
upper left. We show in the figure the double stranded nature of
DNA, the complementary bases Adenine, Cytosine, Guanine,
and Thymine, and the strands’ opposite orientations.

www.manaraa.com

3

The two strands of DNA have opposing orientations, and therefore we term them anti-

parallel. We say the forward direction of the DNA molecule is from the 5’ to 3’ end, the same

direction in which bases are incorporated by a DNA polymerase. Each nucleotide is uniquely

paired with a nucleotide on the opposite strand (a with t, c with g, and vice versa), each

pair called complementary. For this reason, given one strand’s string representation as S, the

second strand can be constructed by reversing the characters of S and taking the complement

of each, producing the string denoted S′. This is known as finding the reverse complement.

In most eukaryotes, such as humans, the nuclear DNA (or genome) of an organism consists

of a small number of pairs of DNA molecules, each pair called a chromosome. Because of this

pairing we refer to such organisms as diploid. When describing the length of the genome of

an organism, we count the two molecules in a single chromosome once. We count this way

because the two molecules are nearly identical, differing in only a few nucleotides. Initially,

when finding a reference assembly for an organism that is diploid, scientists are interested

in only one reference sequence for each chromosome, essentially ignoring these differences.2

Humans have 23 chromosomes totaling over 3 billion bases.

Unlike eukaryotes, prokaryotes like bacteria are haploid, having only one molecule of DNA

connected in a circle. The DNA of bacteria tends to be much shorter than that of eukaryotes;

for example the bacteria E. coli has 5.4 million bases.

DNA has been called the blueprint of an organism. This is because of its primary role as

information encoder. An organism’s genes are subsequences of the DNA which are translated

into proteins and other cellular molecules, which in turn interact with other organic and inor-

ganic molecules in the complex system we call life. As the details of this process are far beyond

the scope of this work, we proceed with the assumption that our understanding of molecular

biology is enhanced by knowing an organism’s DNA; The assembly problem is important to

solve.

Like DNA, ribonucleic acid (RNA) is a polymer composed of four nucleotides, but with

Thymine replaced by Uracil. Unlike DNA, RNA is single stranded. One of RNA’s primary

2One way in which scientists are making use of short read technologies is in attempting to characterize genetic
diversity (differences from the reference) in populations of individuals of the same species.

www.manaraa.com

4

roles in the cell is that of a messenger, transferring the information stored in the DNA to other

parts of the cell. The combined sequences of all the messenger RNA in the cell is called the

transcriptome of the organism. We discuss the assembly of the transcriptomes in Section 3.1.

A DNA sequencing machine reads a small portion of a single strand of DNA along its

direction. In the next section we will outline some experimental processes used to achieve this

goal, but in this work we are especially concerned with the properties of the resulting data, as

needed to reconstruct the originating genome.

Importantly, our work is in direct response to changes in the sequencing processes and the

corresponding changes to the properties of the experimental data. For nearly three decades

from its invention, Sanger sequencing - which produces 700 to 1000 base-pair reads - dominated

the field of DNA sequencing and genome assembly. New developments in high-throughput

short read sequencing are proving a disruptive technology that allows concurrent generation of

millions of reads at a significantly lower per base cost, albeit with limitations on read length

(35-75 bases typically, with the exception of 454, which can produce 160 base paired reads).

Several such platforms are available and seeing rapid adoption in the experimental biology

community (454 Life Sciences system [38], Illumina Solexa [3], Applied Biosystems SOLiD

[47], and Helicos Biosciences Heliscope [70]).

Researchers initially aimed to use short-read sequencing to resequence individuals when

a template genome of that individual’s species was previously known. This involves aligning

the reads to the reference genome, avoiding a de novo assembly, and provides an easy way for

biological analysis such as identifying single nucleotide polymorphisms (SNPs). The Illumina

system has been used for resequencing [4][66], identifying repeats [69], and characterizing

population diversity [46].

As mentioned above, this work instead focuses on the computational methods necessary

for successfully reconstructing an unknown genomic sequence from the short read data. Given

the multimillion dollar expense associated with traditional genome sequencing projects using

Sanger sequencing, high-throughput technologies offer the only hope in sequencing a much

larger number of species. Also, de novo assembly is important in cases where significant

www.manaraa.com

5

genomic rearrangements are expected, such as when sequencing multiple inbred lines of the

same plant species.

Several de novo short read assemblers have recently been developed – ALLPATHS [6], Euler-

SR [7], SHARCGS [12], Shorty [23], Edena[22], Medvedev et al. [40], SSAKE [67], Velvet [71],

and ABySS [60]. Each of these works have included novel ideas on how to tackle this important

problem, but they all (save ABySS, which was published shortly after our work) face the

same fundamental limitation: they ignore resource problems inherent with limiting a solution

to a single processor architecture. We address this limitation by developing an assembler

that effectively uses massively parallel high performance computers and the large distributed

memories available on these machines. Our techniques allow for the de novo reconstruction of

gigabase sized genomes from short sequence reads.

1.1 Sequencing Technologies

A high level understanding of sequencing methods is essential to successfully developing a

sequence assembler. For this reason, we outline the laboratory experiments that produce the

sequence reads.

All sequencing techniques rely on three high level concepts. The first is replication. Each

method relies on the ability to duplicate a DNA molecule use of biological enzymes or bacteria.

The second is random shearing, or breaking DNA into smaller pieces called fragments. Scien-

tists combine replication and shearing to create a DNA fragment library. Finally all methods

offer the ability to read the end (or ends, as first described in [13]) of the randomly sheared

DNA. With enough fragments, we expect most of an organism’s DNA to be covered by these

sequence reads.

Taken together, the above pattern is known as shotgun sequencing (illustrated in Fig. 1.2),

perhaps because of its random and violent nature. When sequencing both ends of a DNA

fragment, this technique has been playfully referred to as double-barreled shotgun sequencing.

www.manaraa.com

6

a)

b)

c)

d)

Figure 1.2 An overview of the shotgun sequencing process. In (a) we show
many copies of the target genome. These are randomly sheared
in (b). In (c) we show the duplication of a single sheared frag-
ment. In (d) we show reading the ends of a fragment.

www.manaraa.com

7

1.1.1 Chain Termination

The principal sequencing method used by experimental biologists during the decades of the

1980’s and 1990’s was sequencing by chain termination.3 In this process, a piece of DNA is

first exponentially duplicated in a process known as a polymerase chain reaction (PCR). The

resulting copies are denatured,4 the pool of denatured DNA separated into four bins, and each

bin combined with a chemical cocktail that includes a number of important ingredients.

1. a DNA primer: The primer allows a copy of the DNA to be created by creating a

starting point from which the polymerase will work.

2. a DNA polymerase: A DNA polymerase is a molecular machine that creates a copy

of a strand of DNA by attaching itself to a template strand, and then incorporating

nucleotides one at a time to match the template.

3. deoxynucleotides (dNTPs): dATP(deoxyadonine diphosphate), dCTP, dGTP, and

dTTP. Mentioned previously, these are the molecules that naturally comprise the DNA

polymer.

4. dideoxynucleotides (ddNTPs): Each bin receives only one of ddATP(dideoxyadonine

triphosphate), ddCTP, ddGTP, and ddTTP. After being incorporated at the end of the

polymer, these special nucleotides inhibit the polymerase’s ability to continue extension.

When these ingredients are combined, the result is a set of DNA molecules separated into

four bins such that all molecules within a bin end in the same base. The molecules within

a bin are separated by size using, for example, gel electrophoresis. When all four buckets

are separated, one can infers the DNA sequence by looking at the position of each group of

molecules on the gel.

A variation on this method allows for sequencing using a single bin by coloring each of

the four terminating molecules (ddATP, ddCTP, ddGTP, and ddTTP) with a different dye

[52]. The dye-based method tends to be used in modern chain terminating sequencers, which

3Also known as Sanger sequencing after its inventor, Fredrick Sanger [53]
4The two complementary strands separated

www.manaraa.com

8

automate the above process and produce reads of length 600-1000 bases. The software Phred

interprets the laboratory data and produces the DNA sequence [15].

1.1.2 Pyrosequencing

The primary difference between short sequencing methods and the chain termination meth-

ods is the ability to measure the synthesizing reaction rather than having to measure the length

of the synthesized result. In pyrosequencing, which is a type of sequencing by synthesis, the

action of the DNA polymerase is measured in real time. This is done by including a chemi-

luminescent enzyme in the solution which emits a pyrophosphate (hence the name) when the

polymerase incorporates a new deoxynuleotide triphosphate [51].

Unlike Sanger sequencing, in which all four dioxynucleotides are present in the reaction,

only one of the four (dATP, dCTP, dGTP, or dTTP) are added to the solution at a time.

Because of the presence of the chemiluminescent enzyme (for example ATP sulfurylase and

luciferase), the incorporation of the dNTP molecule releases a visible light that is measured by

a camera. The presence of apyrase in the solution quickly breaks down any dNTP molecules

that were not incorporated, and the process continues with the next base.

Many such reactions are observed simultaneously on a single chip. For example, 454 life

sciences produced a sequencer in which each piece of DNA is captured in its own well on the chip

after being attached to an enzyme bead. Using a variation on PCR called emulsion PCR (or

sometimes called mini-PCR) the DNA is duplicated within each well [38]. Using a centrifuge,

the beads and attached DNA molecules are kept in place during the sequencing process, which

involves repeated application of one of the four dNTP molecules and measurement of the

resulting reaction. The parallel nature of this process means that this sequencing happens

much more quickly and cheaply than chain termination sequencing. Currently, this technology

can read 400-600 million bases (also called megabases or Mb) in ten hours. The technology

continues to improve, and currently can produce 400 base unpaired reads at 99% accuracy.

The 454 sequencing platform can also produce paired reads at the cost of read length.

Paired reads are reads that are separated by some known insert length, and are very important

www.manaraa.com

9

for de novo assembly, as they allow for the reconstruction of repeated regions of the genome.

For example, the GS FLX Titanium paired end adapter generates 140base paired reads, with

insert lengths of 3kb (3 kilobases or 3,000 bases), 8kb, or 20kb. First, the target DNA is sheared

and fragments of the appropriate size, for example 3kb, are isolated. Then a circularization

adapter is attached to each end of each 3kb fragment. A ligase is used to to connect the

two ends, creating a circular DNA molecule. This molecule is then sheared randomly into

400 base fragments, and the fragments containing the circularization adapter are isolated for

amplification and sequencing. These 400 base fragments will have both ends of the original

fragment on either side of the circularization adapter.

1.1.3 Reversible-Terminator Sequencing

The Illumina sequencing platform [3] and Helicos platform [70] also use a form of sequencing

by synthesis, through a technology known as a reversible terminator. Unlike in Sanger sequenc-

ing, the sequence terminators used in the Solexa and Helicos technologies are reversible which

allows, as in the 454 technology, a scientist to design a chemical process wherein bases are

incorporated one at a time. As the reversible terminator allows incorporation to continue in a

controlled way, the DNA sequence is read as it is grown.

The Illumina system uses a transparent chip. DNA is randomly fragmented and then

attached to this chip. Once attached, a process known as bridge amplification (in which each

new copy of DNA is attached to a nearby location on the chip) is used to create clusters of

DNA on the chip, each cluster containing many copies of the initial fragment that attached

itself to that location. Then, a solution containing four reversible terminators with attached

florescent dyes is washed over the chip, allowing a camera to record which of the four bases

were incorporated at each cluster location. A second chemical wash reverses the terminators

and removes the dye, allowing the process to continue.

Illumina’s latest sequencers generate paired 75 base reads with a total of 20 billion bases in

a single run, which takes around a week including sample preparation. Ends of the fragment

are read in much the same way one one copies a two sided piece of paper. The sequencer first

www.manaraa.com

10

A GC T

A

C

G

T

Figure 1.3 The mapping of each two base motif to the four dyes used in
the SOLiD 2 system.

reads one end of the each DNA fragment during a normal machine run. Then the fragments

are turned over (the opposite end attached to the chip at the same location), such that the

machine can read the other end of the fragment. Thus, the Illumina system produces the same

read length for both unpaired and paired reads, with paired reads coming at half the speed for

twice the data. The platform produces paired reads with insertion lengths between 200 bases

to 500 bases and 2 kilobases to 3 kilobases.

The Helicos system works similarly to the Illumina system, using different underlying tech-

nology [70]. The Helicos system incorporates one type of base at a time, eliminating the need

for multiple dyes. This simplifies the data processing, allowing the system to process the reads

in real time. The Helicos sequencer currently produces 25-35 base unpaired reads.

1.1.4 Sequencing by Ligation

The Applied Biosystems SOLiD 2 system also uses a sequencing by synthesis approach,

but relies on ligase rather than polymerase to incorporate new molecules in the polymer [56].

As with the 454 sequencer, the first stage of the sequencing process involves attaching DNA

fragments to beads, and then using emulsion PCR to amplify the DNA locally. In the SOLiD

system, the beads are affixed to a chip for sequencing.

www.manaraa.com

11

As in any sequencing by synthesis approach, the SOLiD system takes measurements as

new bases are incorporated into the polymer. However, the method for incorporation is funda-

mentally different from the other sequencing methods, which use a polymerase. Instead, the

SOLiD system uses a ligase to attach an eight base probe to the end of each polymer. This

eight base probe has two bases that must align with the template sequence being read and

six junk bases. Thus there are 16 differentiable binding motifs for the probes. Each motif is

associated with one of four possible dies. The mapping of the four dyes into the 16 motifs is

shown in Fig. 1.3.

Sequencing proceeds in a complicated way, but the end result is that a measurement is

taken for at each base in fragment. First, a primer is attached to the base of the bead, of total

length n. An eight base probe is incorporated, and a color measurement taken. At this point

the last three junk bases are cleaved, leaving five bases attached. Ligation continues, offset

five bases from the previous incorporation point. We incorporate seven probes in this manner

for a length 35 read, at which point the DNA is denatured and the probes washed away.

In order to measure a color for each position in the read, we repeat the above process five

times, each time reducing the size of the primer by one base. For example, in the second round,

we use a primer of length n − 1. Thus the color measurements for the sequence of bases are

are interleaved between the five rounds, with each color corresponding to one of four possible

two-base motifs. Because of the chosen mapping function, given a starting DNA base, we can

deterministically translate the measured sequence of colors into a sequence of bases.

Applied Biosystems claims that the quality of the sequencing by ligation method is higher

than for sequencing by polymeration for two reasons. First, ligase is less likely than polymerase

to introduce an incorporation error. Second, each base is measured twice because of the tiled

color measurement.

1.2 The Sequence Assembly Problem

While many attempts have been made to formally define the assembly problem, such at-

tempts invariably give way to heuristic methods. In fact, many formulations of the problem

www.manaraa.com

12

(for example shortest superstring, Eulerian superpath, and string graph-based approaches)

have been shown to be NP-hard [17, 41], as has the simpler problem of deciding from which

of the two strands each sequence was read [35]. In practice, the properties of real data allow

us to find good assemblies despite these results.

The shotgun assembly problem has, as its input, a large set of reads. As described above,

sometimes the data are pairs of reads from complementary strands with an approximately

known intervening distance, or insert length. The insert length is known because we only

include fragments of a chosen size during library creating and approximate because this selec-

tion is inexact. In the presence of paired reads, we expect that the assembled genome conform

to the distance constraints. The coverage of the genome by the data is the ratio of the total

length of all reads to the total length of the genome. Assembly projects using chain termination

methods of sequencing have typically generated 6-fold to 20-fold coverage.

The output of an assembly method is a set of reconstructed DNA molecules that were likely

to have been the template for the reads. The problem is difficult because the genome of an

organism contains repeats of various lengths, frequencies, and similarities. Also, the reads are

not perfect; they contain errors that need to be identified and corrected.

1.2.1 The Overlap-Layout-Consensus Method

Traditionally, Sanger sequencing projects have relied on a heuristic assembly method known

as the overlap-layout-consensus method. In this method, overlaps between reads are used to

guide the the assembly. In the absence of sequencing errors, one would expect that two reads

taken from overlapping spans of the genome would share a common substring (some prefix of

one string would exactly match some suffix of the second string). In the presence of sequencing

errors, such matches are inexact, and a sequence alignment method is used to produce a score

measuring the quality of the overlap [32]. In practice, the overlap scores are not computed

between all pairs of reads, but only those reads that pass some initial test, for example those

containing shared substrings of length k [2], and then the alignments are calculated using a

seed and extend approach similar to that used in [1].

www.manaraa.com

13

Figure 1.4 The overlap graph for BAC 238O23 from the Zea mays genome
sequencing project, with nodes drawn using a force directed
graph layout algorithm. Unitigs are long consistent chains of
overlaps in the graph.

www.manaraa.com

14

An overlap graph is a graph in which each node corresponds to a read, and an edge occurs

between two nodes if and only if a good overlap exists between the corresponding reads [35].

An overlap is good if it is sufficiently long and its alignment score is high. Fig. 1.4 shows

an example of a force directed graph layout algorithm5 applied to the overlap graph of a

BAC6 from the maize assembly project, created as part of the work we did on validating that

assembly. The example shows how the existence of long repeats in the genome complicates

the assembly problem. One sees multiple unitigs (defined as the “maximal interval subgraph

for which there are no conflicting overlaps to an interior vertex”[43]) in the graph converging

at a number of junctions. This convergence happens because a sequence longer than the read

length (> 1000 bases in this case) is repeated in the BAC.

In practice, the overlap graph is not actually built for whole genome shotgun assembly

projects. With around three billion bases in large genomes, a sequencing project with 10-fold

coverage and 800 base average read length results data comprised of around forty million reads

and thirty billion characters. Thus, working with the entire graph is not practical on a uni-

processor machine. Instead, the graph model has inspired many heuristic methods used in

sequence assembly such as the TIGR [63], Celera [45], Phrap [19], CAP3 [24, 25], Atlas[20],

and ARACHNE [2, 33] assemblers. There are many differences in the details of these assembly

methods, but they each proceed with the same general structure, and I will describe the

overlap-layout-consensus method by taking examples from each.

Starting with the best overlapping sequences, contiguous assembled regions (unitigs or,

more commonly, contigs) are extended by adding new reads one at a time. In the absence

of the complications introduced by repeats, this extension would be very straightforward; one

could start with a good overlap and then continue by finding reads that extend the contig by

examining overlaps with reads that have already been incorporated. The presence of repeats

complicates this process. One way the Celera assembler handles repeats is by masking them,

5A force directed graph layout algorithm treats nodes in the graph as entities that repel each other with
some force and treats edges as springy constraints, and then tries to find an energetically stable layout of the
graph.

6BAC stands for bacterial artificial chromosome. For a short description see Section 1.2.3 on hierarchical
sequencing.

www.manaraa.com

15

by either creating a library of known repeats and removing all reads that align to the repeats in

this library, or by identifying reads with many good alignments as repeats [45]. The ARACHNE

assembler [2] watches for branching points to identify the boundaries of repeats. A branching

point occurs when read A aligns with reads X and Y , but X and Y do not align with each

other. The CAP3 assembler [24] uses paired read information to break apart contigs that had

been inappropriately combined due to repeats.

Paired reads are often used in these methods only after the initial contigs are created,7 to

find an ordering of the contigs produced in the first step. This ordering is called a scaffolding

or supercontig. The ARACHNE assembler, as an example, first identifies which contigs cor-

respond to unique regions,8 and then uses clone pairs to create a scaffolding of these unique

regions. Contigs from the repeat regions of the genome are then placed in the gaps of the

scaffolding. Ultimately, overlapping contigs are merged to produce the final assembly. The

ARACHNE II assembler presented an even more sophisticated means of using the paired

reads, including a method of ordering of multiple repeat contigs between unitigs and breaking

apart missassembled contigs [33]. The TAMPA tool allows one to analyze the quality of the

assembly by using the clone pairs to detect insertions, deletions, inversions, and transpositions

[11].

Once the sequences are placed in their approximate location on the genome (the layout

phase of these methods), a consensus sequence is inferred. The CAP3 sequencer uses a multiple

sequence alignment to align each character in each read to a sequence of columns, one column

for each position on the genome. It generates the consensus sequence by finding the consensus

character for each column [24], at the same time deciding if a difference seen in a column is

due to error or due to a true difference on the genome.9

7In the ARACHNE assembler, paired read information is used to create super reads as a first step. Two
pairs of reads are merged if the component reads from both ends of the fragment overlap.

8In the ARACHNE paper, the authors term contigs corresponding to unique regions of the genome unitigs.
Myers et al. [45] call any contig a unitig and a unique unitig a U-unitig. Butler [6] et al. use Myers’ choice
when naming an assembly graph a unipath graph.

9Small differences between the two chromosomes in diploids, or small differences between two copies of the
same repeat could cause a disagreement in a column.

www.manaraa.com

16

1.2.2 Approaches Using Graph Traversal

With short reads eliminating the reliability of read overlaps in predicting genomic co-

location, a revival of graph-based methods has underpinned the development of short-read

assemblers. These graph-based methods permit a more global view when resolving repeats.

While these methods predate short read technology, their reach has not extended significantly

beyond bacterial genomes due to the memory resources required in their use. These memory

limitations are exacerbated by the high coverage needed to compensate for shorter read lengths.

As a result, prior to our work, short-read de novo assembly has been demonstrated on relatively

small genome sizes, ranging from single BACs to bacterial genomes with a few million bases.

1.2.2.1 The Fragment Assembly String Graph

Myers [44] proposed converting the overlap graph to a fragment assembly string graph, or

a graph in which the edges are labeled with strings. His ideas were expanded by Medvedev and

Brudno in the development of a short sequence assembler [40]. Taking as its basis the overlap

graph, Myers’ string graph is quite different from the k-string graph we describe in Chapter

2, which has as its basis the de Bruijn graph. On the other hand, in a more general sense, a

fragment assembly string graph is a graph in which the concatenation of edges of some graph

tour corresponds to the underlying genomic sequence. For that reason, we call Myer’s graph

the overlap string graph. Both the overlap string graph and the k-string graph are bidirected

graphs in which a single tour of the graph corresponds to both strands of the DNA.

To construct an overlap string graph, we create two nodes for every read. We remove from

the graph any nodes corresponding to reads fully contained in some other read in the data.

Next, we draw two directed edges in the graph for each overlap between reads, labeling each

edge with the suffix not part of the overlap the corresponding sequence direction. We find

transitive reduction of this graph,10 and we convert the graph to a bidirected graph, a graph

in which each edge has two directions, one for each incident node. We describe the bidirected

graph model for assembly in Chapter 2.

10Myers proposes a linear time algorithm in the number of edges.

www.manaraa.com

17

Both Myers and Medvedev et al. propose that the assembly should be a tour of the overlap

string graph that conforms to some traversal constraints. They generate these constraints by

calculating an expected traversal count for each edge using the coverage information in the

data. Myers formulated this as a minimum cost network flow problem, later shown to be

NP-hard [41] by reduction from Hamiltonian cycle. Medvedev et al. propose instead modeling

the assembly problem as a convex min-cost biflow, with variations allowing for both minimum

and maximum edge traversal bounds. In doing so, they adapt a known convex min-cost biflow

algorithm to work with bidirected graphs. Both formulation as min-cost and convex min-cost

biflow allow a good assembly to be found without relying on paired reads. However, these

methods are heavily reliant on uniformity in coverage along the length of the genome in order

to correctly assign traversal constraints to each edge.

In addition to modeling the assembly problem as a flow problem, Medvedev et al. also

described the conflict graph and the set of transformations that give rise to it [40]. The conflict

graph is the graph in which every edge with multiple incident edges has both multiple in and

multiple out edges. We make use of the conflict graph in our transcriptome assembly work,

but we also show that one of the graph transformations proposed in [40] may invalidate the

string graph property; after applying this rule the concatenation of edge labels for some tour

of the graph may no longer correspond to the genome.

1.2.2.2 De Bruijn Graphs

Pevzner et al. [50] used the following formulation of sequence assembly, expanding on a

model proposed by Idury and Waterman [26], which in turn was a conceptual successor of the

sequencing by hybridization approach to genome assembly. Each node in the graph corresponds

to a unique k-mer (length k string) present in some input sequence or its reverse complement.

A directed edge connects two nodes labeled aα and αb, where α is a string of length k − 1,

if and only if aαb is present in some read. This graph is a subgraph of a de Bruijn graph of

k-mers, and each input sequence a path.

The genome assembly problem becomes that of finding the shortest tour of the graph

www.manaraa.com

18

that includes each sequence path. While finding a tour of the graph is polynomially solvable,

Medvedev et al. showed that the superpath problem is NP-hard by reduction from the shortest

superstring problem et al. [41]. The superstring problem, which asks to find the shortest string

that has all input strings as substrings, has itself been proposed as a model for the assembly

problem, but it is unsuitable due to the abundance of repeats in genomes. This problem was

shown to be NP-hard in [17].

Directed de Bruijn graphs have been used extensively in short sequence assemblers including

[12], [67], [71], [7], and [22]. Butler et al present an assembler that uses a graph that is nearly

a string graph based on the directed de Bruijn graph [6].

Medvedev succinctly describes the bidirected de Bruijn graph model. To our knowledge,

other than the work described in the previous section and our work, no other modern short

read assemblers use a bidirected model. The bidirected k-string graph and bidirected de Bruijn

graph are described extensively in Chapter 2. After we specify the k-string graph, we shall

revisit how it relates to other graph models and explain why we chose it as the basis of our

assembler.

1.2.3 Hierarchical Sequencing

We are concerned with what is known as whole genome shotgun sequencing. The input

sequences can come from any genomic DNA; other than the paired read information, there is

no structure to them. In fact, we do not even know which of the chromosomes each sequence

comes from a priori. As all reads are in the same pool, the problem of whole genome shotgun

sequencing is more difficult than what is known as hierarchical sequencing.

Traditional hierarchical sequencing requires us to create what is known as a BAC library.

First we break the DNA into longer 100,000 to 400,000 base sequences. These sequences are

incorporated into what is known as a Bacterial Artificial Chromosome (BAC) which is in turn

inserted into an E. coli bacteria. When the bacteria reproduces, it also replicates the BAC.

Each colony of bacteria is then processed to extract the many copies of the original DNA

fragment, which is randomly sheared and sequenced, as described above. We select which

www.manaraa.com

19

BACs to sequence by finding what is known as a BAC tiling path that covers the genome,

using genetic and physical maps.11

Sundquist et al. [62] propose the SHRAP hierarchical short sequencing protocol and

method for assembling hierarchical short read data in parallel. They break the genome into

a number of large pieces that they call clones. These large pieces cover the genome at rela-

tively high coverage (7-fold to 10-fold). Reads are taken from the clones, marked with a clone

identifier, at relatively low coverage (1.5-fold to 2.5-fold). All reads are unpaired; they show

the method to work well on long (length 200+) reads, which cannot be generated in pairs by

current short read technologies.

Assembly proceeds in four major steps. A tiling of clones is inferred by looking at all

overlaps between pairs of reads. Reads are grouped into overlapping sets to assemble, pooling

data from multiple clones. Contigs from step two are treated as reads and assembled using the

same process. The larger newly assembled contigs are scaffolded using the clone tiling.

Hierarchical sequencing is a useful paradigm. It mutes the impact of repeats, as only repeats

within a particular BAC cause assembly issues, and it allows for a natural decomposition of

the computational problem: each region of DNA assembled independently and then combined.

At the same time, hierarchical sequencing comes with a price; it adds complexity and cost

to the experimental design. This was especially true for the traditional BAC by BAC assembly

model described above. As far as we are aware, the SHRAP protocol has not been validated on

experimental data or taken up in sequencing projects. Because of this drawback, whole genome

shotgun sequencing remains undisputed as an important and challenging research area.

1.3 Method and Software Organization

To impose structure on our description of the presented parallel methods, we decompose

them into a sequence of permutations and transformations of arrays of tuples. Each permuta-

tion achieves a partitioning of tuples based upon some key by bringing together all elements

with the same key into consecutive array positions, which we call a bucket. Each transfor-

11A genetic an ordering of markers along chromosomes. In a separate piece of work, we conceived novel
methods for finding consensus genetic maps from multiple sources [28, 29].

www.manaraa.com

20

Figure 1.5 A diagram of the application of a permutation and transforma-
tion of data. We organize our method around this computa-
tional concept.

mation involves processing elements within a bucket and emitting elements of a new type. In

general, we allow two buckets from separate tuple arrays with a common key to be processed by

a single emitting function, resulting in the following two possible notations for a permutation

followed by a transformation.

〈b1, b2, . . . 〉
←−−−−−−−
Function A : 〈a1, a2, . . . 〉

or

〈c1, c2, . . . 〉
←−−−−−−−
Function

A : 〈a1, a2, . . . 〉

B : 〈b1, b2, . . . 〉

Bold fields are used to identify the keys that define the partitioning scheme. Thus in this

notation, we require the partitioning of tuples to be based upon a subset of fields within the

tuple. While our implementation allows for arbitrary partitioning of tuples, this flexibility is

not needed for the description of the assembly method, and we feel that the above notation is

clean. If a partitioning of a single array results in each tuple belonging to singleton partition,

no fields will be written in bold to emphasize this fact. In this case, any permutation of the

data achieves the required partitioning.

www.manaraa.com

21

Figure 1.6 A diagram of the bucket-emit logic when combining two collec-
tions.

The transformation is performed by the named Function, this function having access to

tuples within a bucket (or pair of buckets) and emitting zero or more tuples of a new type.

The notation above will be reduced to the following more natural notation within the

context of a higher level algorithm. The types of the various collections of tuples will be clear

from context.

B
←−−−−−−−
Function (A)

or

C
←−−−−−−−
Function (A,B)

A well known implementation of this pattern is Map Reduce [8], a library developed by

GoogleTMfor processing large data sets. Hadoop is an open source implementation of the

pattern. This bucket-emit pattern is useful because it reduces the method design to finding a

sequence of such operations, without worrying about the underlying library implementation,

www.manaraa.com

22

effectively encapsulating the parallel details.

In addition to the permute-transform operation, for optimization purposes we describe a

second transformation in which we map each key to a unique integer identifier in the range

[0, n− 1] where n is the number of unique keys (and therefore buckets). This operation allows

us to reduce the space requirements of our method by replacing arbitrarily sized keys with

integers.

A : id
←−−−−−
Assign A : key

Because we describe our method using these general computational structures, our assem-

bler can be adapted to many targets – including cloud architectures, heterogeneous architec-

tures, serial architectures, and disk-based architectures – by replacing a few library elements.

We will describe two such adaptations: one targeting a single processor and a second targeting

a distributed memory high performance parallel computer.

1.3.1 Serial Implementation

A serial implementation of the pattern is very simple. Tuples are stored in a single array.

We then permute the elements by sorting this array by some key specified by the user. The

resulting buckets are then processed serially in this sorted order. In the case of two input

arrays, both are sorted using keys specified by the user that are comparable. The buckets are

processed together through a single scan of the two arrays, advancing pointers for each arrays

in the same pattern used for merging two sorted lists. Finally, we specify the assign function,

in which we step through the array, assigning IDs to keys in sorted order.

1.3.2 Parallel Implementation

We now outline our implementation of the communication patterns above on distributed

memory parallel machines. We will describe the parallel model and the all-to-all and many-

to-many collective communication primitives used as a basis for parallel sorting by regular

www.manaraa.com

23

sampling. Finally, we will outline how the patterns above are achieved using these basic

operations.

To ensure practical applicability, we use the distributed memory model of parallel compu-

tation. Let p denote the number of processors on the parallel machine, with each processor

given an integer identifier in the range [0, p − 1], with the ith processor denoted as pi. Each

processor has access to its local memory, and remote memory access is achieved through com-

munication over an interconnection network. A parallel algorithm in this model combines local

computation and message passing between the processors.

In our computational framework, the n tuples in the collection are distributed evenly

among processors, n
p

tuples per processor, stored in an array. To achieve the permutation

of elements based on their keys, we make use of the all-to-all communication pattern, in which

each processor pi sends a distinct message size O
(

n
p2

)

to every other processor pj . All-to-

all functionality is provided by the Message Passing Interface (or MPI), a standard parallel

programming environment used for programming high performance computers. It is known as

a collective communication function. The specific implementation of this pattern varies and

can be optimized for the underlying communication network.

We can choose, for instance, to think of the parallel communication time of all-to-all on

the permutation network model,12 in which each processor can simultaneously send/receive a

message of m bytes in a single communication round, provided no two source/destination pro-

cessors have the same identifier. The cost of a communication is given by some startup latency

factor τ and some transfer cost multiplied by the message size mµ. Given this model, the

all-to-all pattern can be achieved in O
(

(log p)τ + n
p
µ
)

communication time using a butterfly

communication pattern, or in O
(

pτ + n
p
µ
)

in p permutations with a lower constant factor.

In practice the messages we wish to send are not uniform in size as is required in the

description above, and we instead use a many-to-many communication pattern, which is similar

to all-to-all with the difference being that each processor sends and receives variable sized

chunks of data to and from every other processor. A bounded many-to-many communication

12It is useful to reason about parallel algorithms on the permutation model as we can embed this model in
many practical network topologies.

www.manaraa.com

24

Figure 1.7 A diagram of the regular sample sort algorithm. We show in
a) the original data, distributed between 4 processors. In b) we
show the result of sorting the data locally. In c) we gather sam-
ples from each processor to a single location. In d) we choose
splitters and broadcast these to every processor. In e) we divide
the locally sorted data according to the splitters, sending and
receiving between all processors using a many-to-many collec-
tive communication primitive. In f) we merge the data received
in d).

decomposes into two regular all-to-all communications with total size r + s, where s is the

maximum number of elements initially sent by any processor and r is the maximum number

of elements finally received by any processor [55]. In practice, however, the many-to-many

collective communication function provided by the MPI standard library is often implemented

using the same communication structure as a single all-to-all.

We use two higher level parallel algorithms when implementing the bucket and emit frame-

work — parallel sorting and parallel redistribution.

The best algorithm for parallel sorting on distributed memory machines that achieves a

good final distribution of the sorted values is regular sample sort [57, 37]. In a simple regular

sample sort (shown in Fig. 1.7), data is sorted locally, samples are taken from the data at

www.manaraa.com

25

regular intervals, these samples are gathered to a single processor, merged, and then p − 1

splitters are chosen. These splitters define the range of sorted values for which each processor

is responsible. Each processor divides its locally sorted lists into p buckets, and these are then

distributed using a many-to-many pattern. Finally, all p received buckets are merged (generally

resorted) on the destination processors. As the maximum number of elements any processor

receives is bounded by 2n
p

as long as at least p2 samples are taken, regular sample sort uses

a constant number of bounded many-to-many communications and O
(

n
p

)

local computation

for integer sort, and O
(

n
p

log n
p

)

local computation time for comparison sort.

The possible load imbalance after sort might seem unacceptable, but in practice it does

not come close to reaching the 2n
p

proven bound. [21] gives a regular sample sorting algorithm

that achieves even better load balancing guarantees but requires both a regular all-to-all com-

munication and a highly balanced many-to-many communication. In practice, the benefit of

good load balancing does not outweigh the cost of the more complicated algorithm. Instead,

we periodically rebalance our arrays directly using a bounded many-to-many communication

after sorting.

In the case of one tuple array being processed, each processor steps through its locally

sorted array, passing each bucket into the emitting function and storing the results. In the

context of a larger method, the resulting array of tuples will be sorted by some key in a

subsequent bucket-emit phase.

In the case of two tuple arrays being processed together, the first array is sorted in parallel

as previously described. The tuples from the second array are sorted locally. Then, using

the last element from the first array in the first p − 1 processors (giving p − 1 splitters), the

tuples in the second array are divided into p buckets per processor, each bucket containing

keys to be handled by different destination processors. These buckets are then distributed

using the many-to-many communication pattern, before finally being merged or sorted at the

destination processor. After sorting and distribution, buckets from the two lists sharing the

same key are passed into the processing function, using a single linear scan of the two arrays

on each processor.

www.manaraa.com

26

Figure 1.8 A diagram of the butterfly pattern sometimes used when imple-
menting the prefix-sum computation on parallel machines. Each
column corresponds to a processor, and each row corresponds
to a communication step the in pattern. Edges correspond to
communication between processors.

To implement the Assign function, we use what is known as a prefix sum operation. Each

processor pi has a value vi, and we wish to perform a summation over values using a binary

associative operator ⊕. After the summation, we require that processor pi know the partial

summation v0 ⊕ v1 ⊕ ...⊕ vi. Assuming the result of the operator ⊕ is of the same size as the

operands, a prefix sum is calculated in O (log p(τ + |vi|µ)) parallel communication time under

the permutation network model using a butterfly pattern as shown in Fig. 1.8. Some machines,

such as the IBM Blue Gene /L have special communication networks specifically designed to

handle computations like prefix sum. MPI provides a collective communication function (which

it names Scan) that provides built in prefix sum functionality for basic data types and common

operators like add, multiply, bitwise and, bitwise or, minimum, and maximum.

To assign unique identifiers to each key, we first sort all elements based on the key of

interest in parallel. Then we count the number of unique keys present on a single processor pi

by scanning the local array and storing it in variable ci. We perform a prefix sum using the

www.manaraa.com

27

addition operator, recording value si. Finally, processor pi, starting at identifier si−ci, assigns

unique identifiers to each key in its local array from the range [si− ci, si− 1], through a single

traversal of the array.

1.4 Contributions

In this work, we make a number of important contributions to the research area of genome

assembly. We present a short-read sequence assembly framework that we use to successfully

assemble large genomes with high coverage. We have developed parallel methods and used

the large distributed memory present in high performance parallel computers to handle the

memory-intensive phases of the assembly.

We present parallel methods for constructing a bidirected de Bruijn graph of k-molecules

and converting this graph into a bidirected string graph. Input to the algorithm is a set of

reads of total length n. The algorithm outputs a list of edges representing the graph distributed

across processors.

We present methods for assembling transcriptomes. We describe a parallel method for

constructing what is known as a conflict graph by processing sets of independent nodes in the

graph. We have conceived methods for simplifying the graph (and thus improving assembly)

by using the differential coverage manifest in these data sets.

We have conceived of a feature of paired read data which we term a (k + 1)-pair cluster.

We present a parallel method for computing these features and an algorithm that finds paths

corresponding to contigs by starting with unambiguous long edges as seeds, and then extending

each path using heuristic rules that rely on the computed features. We present the first

assembly method designed to flexibly incorporate any number of insertion lengths as a first

principle. We compare the features of our short sequence assembler with other assemblers in

the field in Table 1.1.

We present experimental results of our assembly method demonstrating is validity. We

validate our assembler on an experimental data set taken from E. coli and compare the results

to other short sequence assemblers. We also measure the scaling performance of the software

www.manaraa.com

28

Whole Error Paired Single Multiple Bidirected

Genome Correction Reads Length Lengths Model Parallel 13

OurName X X X X X X

ABySS [60] X X X X

Medvedev [40] X X X X

Myers [44] X X

ALLPATHS [6] X X X X14

Euler-SR [7] X X X X

Velvet [71] X X X

Shorty [23] X X X X

Sundquist [62] X X

SSAKE [67] X

Edena[22] X

Table 1.1 A comparison of short sequence assemblers by functionality as
has been described in the cited papers. 13We do not record parallelism

at the node level (effectively using both cores in a dual-core processor), but

rather large scale parallelism across nodes. 14The ALLPATHS assembler

requires that the data contain exactly three types of paired reads: a short

insert length (for example 250 bases), a medium insert length (for example

2000 bases), and a long insert length (for example 10,000 bases).

using this data set. Using synthetic data, we demonstrate a 99.9% accurate assembly of the

Drosophila Melanogaster genome in four hours, with 50% of the genome covered by contiguous

assembled regions of length at least 102Kb.

www.manaraa.com

29

CHAPTER 2. CONSTRUCTION AND COMPACTION OF k-STRING

GRAPHS

A sequence assembly string graph is a graph in which edges are labeled with strings and

for which the concatenation of edge labels on some path corresponds to the genomic sequence.

To solve the assembly problem using a sequence assembly graph, we must find this path.

A bidirected sequence assembly string graph is a string graph in which each edge has two

labels, one for each direction of traversal. The bidirected string graph is a natural model

for the assembly problem because the two string labels correspond to the two strands of a

DNA molecule. Specifically we are interested in the bidirected string graph that is the lowest

order graph homeomorphic with the subgraph of the bidirected de Bruijn graph defined by the

spectrum of (k +1) length molecules taken from the genome, which we call the k-string graph.

This model is closely related to many of the models other researchers have proposed, and

it is reasonable to say that all of these models are functionally equivalent in that finding the

assembled genome is equivalent to finding a path in the graph. In introducing the model,

we will first describe the bidirected de Bruijn graph, which has been concisely described by

Medvedev et al. [40], and is inspired by the work of Idury and Waterman [26] and others. Then

we will describe how we transform this graph into the k-String graph. After specifically laying

out our model, we will compare and contrast it with prior models, before finally describing its

representation and construction using the bucket-emit paradigm presented in the introduction.

2.1 The Bidirected de Bruijn Graph

For a string α of length |α| = l, we denote the ith character of α as α[i], 1 ≤ i ≤ l. We

denote the substring from α[i] to α[j], inclusive, as α[i, j], 1 ≤ i ≤ j ≤ l. A DNA strand is

www.manaraa.com

30

a string with alphabet Σ = {a, g, c, t}. We call the characters of a DNA strand bases. The

complement operation on a base α[i], denoted by α[i]′, is defined by the following bijection of Σ

onto Σ: {t→ a, c→ g, a→ t, g → c}. The reverse complement operation on a DNA strand α,

denoted by α′, is the operation of reversing α and complementing each base (α′[i] = α[l−i+1]′).

Note that α[i] = α[i]′′ and α = α′′.

A DNA molecule is a pair of complementary DNA strands, m = {αm, α′
m}. We denote the

length of m as |m| = |αm| = h and call m an h-molecule. We designate the lexicographically

larger of the two strands as the positive strand, denoted m+, and the lexicographically smaller

of the two strands as the negative strand, denoted m−. We choose the ordered tuple m =

〈m+, m−〉 as a canonical representation of the molecule. Note that because we can find m−

from m+ using the reverse complement operation, we represent a molecule using only m+. For

this reason we also call m+ the representative strand. If αm = α′
m, then m+ = m− and we

say that the molecule is a reverse complement palindrome. Note that a molecule cannot be a

reverse complement palindrome if its length is odd.

A sub-molecule m[i,j] of molecule m is the molecule {m+[i, j], m−[|m| − j + 1, |m| − i + 1]}.

We denote the positive strand of a sub-molecule as m+
[i,j] and the negative strand as m−

[i,j].

Note that either the substrand m+[i, j] or the substrand m−[|m| − j + 1, |m| − i + 1] might be

m+
[i,j].

We say that we extend a molecule by adding a base to the end of one strand and the

complementary base to the beginning of the other strand. If we add a base to the end of the

positive strand, we call this operation a positive extension. We denote a positive extension as

mc, where c is the base appended to the positive strand. If we at the same time remove a base

from the beginning of the positive strand and the end of the negative strand, this operation

becomes a positive shift, denoted −→mc. Correspondingly, we denote a negative extension as cm,

where c is the base appended to the negative strand. If we at the same time remove from the

beginning of the negative strand, we call this operation a negative shift, denoted ←−cm.

A bidirected graph is a graph G = {V, E} where edges are of the form (〈u, du〉, 〈v, dv〉),

where di ∈ {out, in} is the direction of the edge at end point i. A traversal of a bidirected

www.manaraa.com

31

Figure 2.1 The four ways in which nodes are connected in the bidirected de
Bruijn graph, with the edges labeled with the initial characters
in the bidirected k-string graph (before edge compaction).

graph must respect edge directions at each node – if entering on an out direction, one must

exit on an in direction, and vice versa.

In a bidirected de Bruijn graph Gd = {Vd, Ed}, (see Fig. 2.1), the set of nodes in the

graph are all possible molecules of length k, |Vd| = |Σ|
k. An edge (〈u, du〉, 〈v, dv〉) ∈ Ed if and

only if there exists a shift that transforms the molecule corresponding to u to the molecule

corresponding to v. Notice that |Ed| = |Σ|k+1. If u is transformed to v by a positive shift,

then du = out. If u is transformed to v by a negative shift, then du = in. The arrow head at

v is defined similarly. We show in Fig. 2.1 the four possible edge types in the bidirected de

Bruijn Graph. Each edge in the de Bruijn graph corresponds to a (k + 1)-molecule.

The genomic DNA of an organism is a set of molecules M = {M1, M2, ...Mc}. A read is a

sub-molecule taken from this set, Mh[i,j], 1 ≤ h ≤ c, rmin ≤ j − i + 1 ≤ rmax, where rmin and

rmax are the minimum and maximum possible read lengths determined by the experimental

process. Current sequencing methods read only one strand of the DNA molecule, and from

this strand we construct the canonical representation. We expect that reads contain errors,

but this complication will be ignored for now.

An edit distance graph is a graph in which nodes correspond to objects, and two nodes are

connected if and only if the edit distance between the objects represented by those nodes is

one. The de Bruijn graph is an edit distance graph. For sequence assembly, we could define the

edit distance graph Ge = {Ve, Ee} as the graph in which nodes are all length k sub-molecules

of reads, also called the k-spectrum of the reads, and the edit operation is the shift operation

defined above. This graph is a subgraph of the de Bruijn graph induced by a subset of nodes:

{〈u, du〉, 〈v, dv〉} ∈ Ee ⇔ ({〈u, du〉, 〈v, dv〉} ∈ Ed) ∧ (u ∈ Ve) ∧ (v ∈ Ve), and we gave a parallel

www.manaraa.com

32

method for its construction in [27]. The edit distance graph is nearly suitable for assembly,

but some edges correspond to molecules that do not exist in the genome, as we show below.

The occurrences of molecule m is the set of tuples m̌ = {〈x, s〉| m[1,|m|] = Mx[s,s+|m|−1]}. A

molecule m is a genomic repeat if |m̌| > 1. A genomic repeat m is right maximal if there exists

two occurrences of m such that the molecules obtained by appending the next base from the

genomic sequence for each occurrence in the direction of m’s positive strand are different, i.e.

there exists some i and j such that:

m′
i 6= m′

j

m′
i =

Mxi
[si, si + |m|+ 1] if m+[1, |m|] = M+

xi
[si, si + |m| − 1]

Mxi
[si − 1, si + |m|] otherwise

m′
j =

Mxj
[sj , sj + |m|+ 1] if m+[1, |m|] = M+

xj
[sj , sj + |m| − 1]

Mxj
[sj − 1, sj + |m|] otherwise

Similarly, a genomic repeat m is left maximal if and only if there exists some i and j such

that:

m′
i 6= m′

j

m′
i =

Mxi
[si − 1, si + |m|] if m+[1, |m|] = M+

xi
[si, si + |m| − 1]

Mxi
[si, si + |m|+ 1] otherwise

m′
j =

Mxj
[sj − 1, sj + |m|] if m+[1, |m|] = M+

xj
[sj , sj + |m| − 1]

Mxj
[sj , sj + |m|+ 1] otherwise

A maximal genomic repeat is a genomic repeat that is both left and right maximal.

Observation 2.1.1. The edit graph contains at most (|Σ|2−|Σ|)w edges that do not correspond

to genomic submolecules, where w is the number of (k−1)-molecules that are maximal repeats.

Proof. Each edge in the graph connects nodes corresponding to two k-molecules c1m and

mc2, where c1 and c2 are extensions of (k − 1)-molecule m. The edge connecting these nodes

www.manaraa.com

33

corresponds to a (k + 1)-molecule, c1mc2.

• Case 1: m is a maximal repeat. In the worst case, |m̌| = |Σ| and each occurrence of m is

followed by and preceded by each member of Σ. In this case there are |Σ|2 edges in the

graph for |Σ| occurrences.

• Case 2: m is not maximal. Then m is either not right maximal or not left maximal.

In the case the m is not right maximal, then every occurrence of m is succeeded by c2.

By construction, c1m occurs in the genome. This occurrence must be succeeded by c2,

and therefore c1mc2 must occur in the genome. The case that m is not left maximal is

handled similarly.

Summing the cases, we find that if w is the number of maximal (k − 1)-molecules, then the

maximum number of invalid edges in the graph is (|Σ|2 − |Σ|)w.

Definition 2.1.2. The observed bidirected de Bruijn Graph is the graph Go = {Eo, Vo} defined

by the (k+1)-spectrum of the reads (all length (k + 1) submolecules from the reads) in which

nodes correspond to the k-spectrum of reads and an edge exists between nodes corresponding to

molecules c1m and mc2, where m is a (k − 1)-molecule and and c1 and c2 are extensions, if

and only if the (k + 1)-molecule c1mc2 is in the (k + 1)-spectrum.

Observation 2.1.3. The observed bidirected de Bruijn Graph is a subgraph of the edit distance

graph with Vo = Ve and Eo ⊆ Ee.

Each node u has a set of incident edges Au that we partition into two sets, one set Iu of

edges pointing into the node and the other Ou of edges pointing out of the node. We partition

nodes of the observed bidirected graph into four groups based upon underlying repeat structure

of the genome, assuming perfect coverage and error correction:

1. A node is a maximal repeat if and only if |Iu| > 1 ∧ |Ou| > 1

2. A node is a right maximal repeat if and only if |Ou| > 1

3. A node is a left maximal repeat if and only if |Iu| > 1

www.manaraa.com

34

4. A node is a molecule that is neither a left nor right maximal repeat if if |Iu| ≤ 1∧|Ou| ≤ 1

The bidirected de Bruijn graph naturally models both strands of the DNA molecule concur-

rently, and when finding a path in the bidirected graph that corresponds to the genomic DNA,

we are finding both strands concurrently. The bidirected de Bruijn graph constructed using the

canonical node and edge labeling as described has the desirable property that if we construct

the subgraph corresponding to some molecule α that is shared between two reads r1 and r2

independently for r1 and r2, both the structure and labeling of the graph is deterministic. This

property enables constructing such a graph possible in parallel.

2.2 k-String graph

We label each edge with two strings to create a bidirected string graph. Each string

corresponds to the first character of each strand of the (k + 1)-molecule corresponding to the

edge. Each string is associated with a traversal direction, again corresponding to the strand

directions of the (k + 1)-molecule (see Fig. 2.1).

Let mu denote the molecule labeling u in the de Bruijn graph and mv denote the molecule

labeling node v. We define strings labeling an edge connecting nodes u and v, cuv and cvu as:

cuv =

m+
u [1] if du = out

m−
u [1] otherwise

cvu =

m+
v [1] if dv = out

m−
v [1] otherwise

We convert the bidirected de Bruijn graph to the bidirected k-string graph by compact-

ing all chains in this graph and concatenating edge labels. By construction, given edges

(〈u, du, cuw〉, 〈w, dw, cwu〉), (〈w, dw, cwv〉, 〈v, dv, cvw〉) with in(w) = out(w) = 1, replace these

two edges with a single edge (〈u, du, cuv〉, 〈v, dv, cvu〉), with cuv = cuwcwv and cvu = cvwcwu

until no such motif exists. The resulting graph is a k-string graph. We show an example

genome with the corresponding k-string graph in Fig. 2.2.

www.manaraa.com

35

Figure 2.2 An example genome with repeats and the resulting bidirected
k-string graph. The genome is given as a sequence of maximal
repeat or unique regions, each labeled with a letter from the
English alphabet. We draw the graph nodes as gray circles and
label the edges using the corresponding letters.

2.3 Relatives of the k-String Graph

The k-string graph has many close relatives in the sequence assembly literature. A directed

version of the observed de Bruijn graph is advocated by many researchers [7, 26, 50]. In such

a graph, two nodes exist for every node in the bidirected graph, and a traversal through the

graph simultaneously moves along two paths at once. Medvedev et al. advocated the bidirected

de Bruijn graph [41]. The k-string graph is the lowest order graph homeomorphic with this

graph, and is edge labeled rather than node labeled.

In the Velvet method of assembly, a directed graph that is structurally similar to the k-

string graph is created, but is instead node labeled [71]. In the ALLPATHS assembler, an

edge labeled graph called the unipath graph is defined. This graph (developed concurrently

with this work) is structurally similar to the k-string graph, but unlike the k-string graph,

a concatenation of edges along a path does not correspond to the genome. Instead, each

subsequent edge in the path overlaps by exactly k characters. Again, the unipath graph is

directed rather than bidirected [6].

As described in the introduction, an edge labeled graph closely related to the overlap graph

was put forward by Myers. This graph is quite different from the other models presented here,

www.manaraa.com

36

although Myers advocated both its bidirected nature and the property that the concatenation

of edge labels along some traversal of the graph corresponds to the genome. This model was

used by Medvedev (who also demonstrated that the formalization of assembly proposed by

Myers was NP-hard [41]) in an assembler that first introduced in the literature the idea of a

conflict graph [40]. We will discuss the conflict graph in Chapter 3 when describing our method

for transcriptome assembly.

All of these models have strengths and weaknesses, and we developed our specific model,

the k-string graph model, after a careful review of the prior literature. The k-string graph

has a number of strengths. First, being a bidirected graph, a single traversal of the graph

corresponds to the genome. There is no conceptual need to think of two concurrent “linked”

traversals as is needed in a directed model. Second, the graph is edge labeled, and a traversal

of the graph and the corresponding concatenation of edge labels has significance. This is

consistent with other string data structures. For example in a suffix tree the concatenations of

edge labels in the tree corresponds to a substring of the string. A weakness of the model is the

added complexity of reasoning about a bidirected graph when compared to a directed graph.

2.4 De Bruijn Graph Construction and Representation

We are given a file containing m sequences of total length n, sampled from a genome of total

length g. We wish to construct a bidirected string graph with O(g) edges and nodes. First we

construct the observed bidirected de Bruijn graph by finding all length k +1 molecules present

in the input. Then we compact all chains in the graph by converting the problem of chain

compaction to undirected list ranking. This conversion is useful because of our requirement

that the resulting assembler run on high performance computers.

As we might have n >> g, we may not be able read all of the data at once because all

reads do not fit into memory, even on large, distributed memory machines. For this reason,

we read the data in stages, keeping track of all (k + 1)-molecules seen in the input.

We encode each (k + 1)-molecule as a base 4 number (in 2k + 2 bits) using its repre-

sentative stand. As this process proceeds, we construct a collection of tuples of the form

www.manaraa.com

37

〈(k + 1)−molecule, count〉 where count is an integer holding the number of times a particular

(k + 1)-molecule has been seen. Formally, for each read r which is a string over the alphabet

{a, g, c, t}, we perform the following transformation:

Algorithm 1 : Extract

〈(k + 1)-molecule, count〉
←−−−−−−
Extract A : 〈r〉

num← |r| − k − 1

for i from 1 to num do
←−−−
Emit: 〈Encode(r[i, i+k +1]), 1〉 {Zero to many tuples can be emitted by any function.}

end for

After reading all (k + 1)-molecules in one stage, we use a simple reduction to update the

(k + 1)-molecule counts.

Algorithm 2 : SumCount

〈(k + 1)-molecule, count〉
←−−−−−−−−
SumCount

A : 〈(k + 1)-molecule, count〉

B : 〈(k + 1)-molecule, count〉

final← 0

for all 〈(k + 1)-molecule, count〉 in A do

final← final + count

end for

for all 〈(k + 1)-molecule, count〉 in B do

final← final + count

end for
←−−−
Emit: 〈(k + 1)-molecule, final〉

These functions are combined in a framework that allows for reading sequences in S stages

(for now we are ignoring the possibility of sequencing errors, which will be addressed shortly).

Algorithm 3 : Read

K ← ∅

for s from 1 to S do

R ← GetReads(s)

K′ ←−−−−−−Extract(R)

K
←−−−−−−−−
SumCount(K,K′)

end for

Once all (k + 1)-molecules have been extracted from the short reads, the next step in the

algorithm is to generate a list of tuples corresponding to the edges in the de Bruijn graph. We

www.manaraa.com

38

choose to store the graph using two tuples for each edge, each tuple of the form 〈u, e, cu, du〉,

where u is a unique node identifier, e is a unique edge identifier, cu is a character labeling

the edge when traveling out of node u, and d ∈ { out, in } indicating the direction of the

arrowhead at u. This representation mimics our chosen notation for an edge from the previous

section: (〈u, du, cuv〉, 〈v, dv, cvu〉), with the field e added in order to explicitly name the edge.

This representation adds flexibility when grouping tuples. If we group tuples by u, each

bucket holds the adjacency list for u. If instead we group them by e, then both tuples for that

edge come together in a single bucket.

We now describe an algorithm for constructing the initial k-string graph (pre-compaction)

from the set of (k + 1)-molecules using the following transformation:

Algorithm 4 : GenerateGraphTuple

〈k−molecule, e, cov, du, cu〉
←−−−−−−−−−−−−−−−−−−
GenerateGraphTuple A : 〈(k + 1)-molecule, e, count〉

full← (k + 1)-molecule

left← full[1,k]

right← full[2,k+1]

dl ← if left+[1] = full+[1] then out else in

dr ← if right+[1] = full+[2] then in else out
←−−−
Emit: 〈left, e, count, dl, full+[1]〉
←−−−
Emit: 〈right, e, count, dr, full−[1]〉

We combine this algorithm with the Assign functionality (described in Chapter 1) to give

a final algorithm for converting the (k + 1)-molecules into the tuple graph representation.

Algorithm 5 : GenerateGraph

K ← Read()

K : e
←−−−−−
Assign K : (k + 1)-molecule

D
←−−−−−−−−−−−−−−−−−−−
GenerateGraphTuples(K)

D : u
←−−−−−
Assign D : k-molecule

2.5 List Ranking

The bidirected graph generated in the previous section has many long chains, each corre-

sponding roughly to the contigs or unitigs described in the previous chapter. These chains are

www.manaraa.com

39

then connected in a more interesting topology that must be further analyzed. We compact

these chains by using undirected list ranking.

For the undirected list ranking problem, we are given a set of nodes N connected in a

weighted undirected list structure defined by the collection of tuples 〈u, a1, w1, a2, w2〉 of size

|N |, where a1, a2, u ∈ N . w1 is an integral weight associated with a1 and w2 is an integral

weight associated with a2.

The undirected list structure is defined by the following properties:

1. uniqueness: For two distinct tuples 〈u, a1, w1, a2, w2〉 and 〈u′, a′1, w
′
1, a

′
2, w

′
2〉, u 6= u′.

2. continuity: ai 6= u→ a1 6= a2

3. consistency: For two distinct tuples 〈u, a1, w1, a2, w2〉 and 〈u′, a′1, w
′
1, a

′
2, w

′
2〉, if ai = u′

for some i, then there exists j such that a′j = u and wi = w′
j .

If a1 = u or a2 = u, then u is called an endpoint. If a1 = a2 = u then u is a singleton list.

The solution to the list ranking problem is a set of tuples 〈u, e1, r1, e2, r2〉. r1 is the rank

of u relative to e1, the list endpoint in the direction of a1. r2 and e2 are respectively defined

in the direction of a2.

2.5.1 List Ranking Transformation

Conceptually, to construct the k-string graph, we replace each chain in the graph with a

single edge, labeled by the concatenation of all edge labels along the chain. We identify adjacent

edges in a chain by looking at the adjacency list of nodes in the graph. If an adjacency list

has exactly two edges and the endpoints of those edges at the node are consistent (pointing

in opposite directions), then those two edges are adjacent in a chain. All edges adjacent to a

node that does not have the previous property are endpoints in the list ranking formulation.

In our framework, we identify the adjacencies of an element using Algorithm 6.1

1As shown in the pseudocode, we choose to index the elements in the bucket from 1 to the size of the bucket,
given using the notation |A|.

www.manaraa.com

40

Algorithm 6 : EdgesToAdjacencies

〈id, adj〉
←−−−−−−−−−−−−−−−
EdgesToAdjancies A : 〈u, e, cov, du, cu〉

if |A| = 2 and A[1].du 6= A[2].du then
←−−−
Emit: 〈A[1].e,A[2].e〉
←−−−
Emit: 〈A[2].e,A[1].e〉

else

for all 〈u, e, du, cu〉 in A do
←−−−
Emit: 〈e, e〉

end for

end if

Observation 2.5.1. Because the transformation EdgesToAdjacencies emits exactly one tuple

for each edge tuple in the graph representation, this transformation emits exactly two tuples

for each edge e.

To translate the adjacencies to the list ranking formulation is a simple mapping. We check

to see if an adjacency indicates an endpoint, and if it does we set the weight of the edge to 0;

otherwise we set it to 1. This logic is given as Algorithm 7.

Algorithm 7 : AdjacenciesToListRanking

〈u, a1, w1, e1, r1, a2, w2, e2, r2, m〉
←−−−−−−−−−−−−−−−−−−−−−
AdjanciesToListRanking A : 〈id, adj〉

a← if A[1].id = A[1].adj then 0 else 1

b← if A[2].id = A[2].adj then 0 else 1
←−−−
Emit: 〈A[1].id,A[1].adj, a, 0, 0,A[2].adj, b, 0, 0, 0〉

The field m is an integer marking associated with each node, used in the next section.

2.5.2 Undirected List Ranking

The undirected list ranking problem is a modification of the traditional list ranking problem,

which has been extensively studied on parallel computers. The sparse ruling set algorithm

achieves the best run time on large data sets with a large number of processors [59], and we

have accordingly designed a modified version of the sparse ruling set algorithm to operate on

undirected lists and to be compatible with our bucket-emit framework.

The sparse ruling set algorithm is a recursive algorithm on a weighted list. In the base case,

www.manaraa.com

41

Figure 2.3 The recursive sparse ruling set algorithm. We show in a) the
initial problem. We show in b) the recursive formulation, with
the thickness of dashed lines corresponding to the distance be-
tween unmarked nodes and adjacent marked nodes. We show in
c) the recursive problem, with weights given as line thickness.
A base case is shown.

a list contains two or fewer elements. For the inductive case, we wish to achieve the following

objectives. First, we wish to mark some subset of nodes which include all endpoints and some

other nodes, each marked with probability ρ. Second, we wish to find the distance between

each unmarked node and its two closest marked nodes. Finally, we wish to find the distance

between adjacent marked nodes. We show the recursive formulation used in the algorithm in

Fig. 2.3.

Once we have this information, we create a new instance of the problem containing only

the marked nodes, with the adjacencies of each marked node set to be the nearest marked

nodes in the list, and the weights as the distance to those marked nodes. This new instance is

then recursively solved (see Fig. 2.3). After the recursion, we know R for all marked nodes.

We compute R for all unmarked nodes by combining this solution with the distances from the

unmarked nodes to the marked nodes.

We now formally describe the algorithm in our computational framework. The algorithm

can be viewed as passing a message containing four components: M = 〈t, s, o, d, e〉, where t is

the target of the message, s is the source of the message, o is the id of the originating marked

node, d is the distance to the originating marked node, and e is a boolean field indicating if

the originating marked node was an endpoint. These messages originate at marked nodes and

www.manaraa.com

42

are passed along the length of the list until reaching a second marked node.

We use the field m to indicate the marking of a list ranking tuple. Initially, m = 0 for all

nodes. We set m to 1 for marked nodes. We set m to −1 to identify the base case. The first

algorithm we present is used to mark nodes and generate messages. It generates two messages

for each marked node, one for each adjacency, and is given in Algorithm 8.

Algorithm 8 : GenerateListMessages

〈t, s, o, d, e〉
←−−−−−−−−−−−−−−−−−−−
GenerateListMessages A : 〈u, a1, w1, m1, r1, a2, w2, m2, r2, m〉

p← Rand()

if a1 = u then

if a2 = u then

m← −1

else

m← 1
←−−−
Emit: 〈a2, u, u, r2, true 〉

end if

else if a2 = u then

m← 1
←−−−
Emit: 〈a1, u, u, r1, true 〉

else if p < ρ then

m← 1
←−−−
Emit: 〈a2, u, u, r2, false 〉
←−−−
Emit: 〈a1, u, u, r1, false 〉

end if

The second algorithm propagates messages. The first step is to analyze from which direction

the message came. This is done by comparing a1 to s. We call the tuple information in

the incoming direction ai, wi, ei, ri and the adjacency information in the outgoing direction

an, wn, en, rn. We record the originating marked node as the temporary endpoint: ei ← o and

the distance to that node as the temporary rank: ri ← d. If the node is marked, we do not

propagate the message. If the node is an endpoint and the originating marked node was also

an endpoint, the algorithm sets m to -1 in order to indicate that the newly recorded ei and ri

are final. If the node is unmarked, the message is propagated to an adding the weight of the

next edge wn to the distance traveled d. This process is given in Algorithm 9.

After all messages have been propagated, the recursive algorithm is constructed by copying,

www.manaraa.com

43

Algorithm 9 : PropogateListMessages

〈t, s, o, d, e〉
←−−−−−−−−−−−−−−−−−−−−
PropogateListMessages

A : 〈u, a1, w1, e1, r1, a2, w2, e2, r2, m〉

B : 〈t, s, o, d, e〉

for all 〈t, s, o, d, e〉 in B do

i← if a1 = s then 1 else 2

n← if a1 = s then 2 else 1

ei ← o

ri ← d

if (a1 = u or a2 = u) and e then

m← −1

else if m = 0 then
←−−−
Emit: 〈an, u, o, d + wn, e true 〉

end if

end for

for all marked tuples, the temporary endpoint information into the adjacency information:

ai ← ei and wi ← ri. We emit the new list ranking problem. This step is given in Algorithm

10.

Algorithm 10 : GetRecursiveProblem

〈u, a1, w1, e1, r1, a2, w2, e2, r2, m〉
←−−−−−−−−−−−−−−−−−−−
GetRecursiveProblem A : 〈u, a1, w1, e1, r1, a2, w2, e2, r2, m〉

if m = 1 then
←−−−
Emit: 〈u, e1, r1, e1, r1, e2, r2, e2, r2, 0〉

end if

Finally, after the recursive problem has been solved, each unmarked node must query its

two neighboring marked nodes for their ranks and endpoints. This information will be used to

calculate the final ranks and endpoints for the unmarked nodes. This task is complicated by

adjacency numbering having no inherent meaning. For instance, e1 returned by one neighboring

marked node may be different from e1 returned by other neighboring marked node. For this

reason, we must compare the endpoints returned by the marked nodes to discover which

endpoints are equivalent. Finally, we calculate our position in the list relative to each endpoint

by making use of the property that all edges in the undirected list ranking formulation have non-

negative weight. Therefore, we infer which of the two marked nodes is between the unmarked

node and each endpoint of the list using the returned distance information.

www.manaraa.com

44

We decompose the above method into four steps. The first step reintegrates the solution

to the recursive problem with the current problem, given in Algorithm 11.

Algorithm 11 : Integrate

←−−−−−−−
Integrate

A : 〈u, a1, w1, e1, r1, a2, w2, e2, r2, m〉

B : 〈u, a1, w1, e1, r1, a2, w2, e2, r2, m〉

if |B| > 0 then

A[1].e1 ← B[1].e1

A[1].r1 ← B[1].r1

A[1].e2 ← B[1].e2

A[1].r2 ← B[1].r2

end if

The second step sends query messages from unmarked nodes to marked nodes, given in

Algorithm 12.

Algorithm 12 : QueryMarkedNodes

〈t, s〉
←−−−−−−−−−−−−−−−−−
QueryMarkedNodes 〈u, a1, w1, e1, r1, a2, w2, e2, r2, m〉

if m = 0 then
←−−−
Emit: 〈e1, u〉←−−−
Emit: 〈e2, u〉

end if

The third step returns ranking information from marked nodes to unmarked nodes, given

in Algorithm 13.

Algorithm 13 : ReturnListInformation

〈t, s, e1, r1, e2, r2〉
←−−−−−−−−−−−−−−−−−−−
ReturnListInformation

A : 〈t, s〉

B : 〈u, a1, w1, e1, r1, a2, w2, e2, r2, m〉

for all 〈t, s〉 in A do
←−−−
Emit: 〈s, t, e1, r1, e2, r2〉

end for

The fourth step takes the information returned from marked nodes, and updates the rank

information for unmarked nodes, given in Algorithm 14.

Given these last four algorithms, we have described all of the components needed to present

a recursive list ranking algorithm using our computational framework. It is given in Algorithm

www.manaraa.com

45

Algorithm 14 : ComputeRank

←−−−−−−−−−−−−
ComputeRank

A : 〈t, s, e1, r1, e2, r2〉

B : 〈u, a1, w1, e1, r1, a2, w2, e2, r2, m〉

one← if A[1].s = e1 then A[1] else A[2]

two← if A[1].s = e1 then A[2] else A[1]

if one.e1 = two.e1 then

a← if one.r1 < two.r1 then 1 else 2

b← if one.r1 < two.r1 then 2 else 1

else

a← b← if one.r1 < two.r2 then 1 else 2

end if

e1 ← one.ea

r1 ← r1 + one.ra

e2 ← two.eb

r2 ← r2 + two.rb

15.

Algorithm 15 : ListRank(L)

if |L| > 0 then

M
←−−−−−−−−−−−−−−−−−−−
GenerateListMessages(M)

while |M| > 0 do

M
←−−−−−−−−−−−−−−−−−−−−
PropogateListMessages(M,L)

end while

L′
←−−−−−−−−−−−−−−−−−−−
GetRecursiveProblem(L)

ListRank(L′)
←−−−−−−−
Integrate(L,L′)

F
←−−−−−−−−−−−−−−−−−
QueryMarkedNodes(L)

R
←−−−−−−−−−−−−−−−−−−−
ReturnListInformation(F ,L)

←−−−−−−−−−−−−
ComputeRank(R,L)

end if

2.5.2.1 Run-Time Analysis

We wish to briefly address the characteristics of Algorithm 15. The number of rounds of

message passing in the loop in Algorithm 15 is equivalent to the longest distance between two

marked nodes. As each node is randomly marked, this distance is bounded by 3ρ ln(|L|) with

high probability [9]. Therefore, the expected number of iterations in the loop is O(log(|L|)).

www.manaraa.com

46

Marked nodes emit two messages during the initial message construction and never again.

Unmarked nodes receive and reemit exactly two messages, which originated at the adjacent

marked nodes, during some processing step in this loop. Therefore, the summation of the

distributed size of the arrayM over all of these O(log(|L|)) iterations is O(|L|).

Because the size of the list ranking problem is expected to exponentially decrease in

O(log |L|) recursive calls, the total expected distributed size of array L over all recursive

steps is O (|L|). Moreover, the total number of iterations in the inner loop of Algorithm 15

is O(log2 |L|) (log |L| per recursive problem), and the total distributed problem size is |L|,

including all recursive calls of Algorithm 15 and all iterations of the inner loop over those

recursive calls. Therefore, the total amount of work done using our computational framework

is proportional to the amount of work needed to processes the original list L.

2.6 k-String Graph Construction

After solving the list ranking problem, we use the solution to construct the k-string graph.

We represent the k-string graph using two tuple arrays. The first array stores the edge labels

as chains of tuples. We denote this array C with tuples of the form 〈ch, e, pF , pR, cF , cR〉. The

components of the tuple have the following meaning:

• ch is an integer identifier for the chain.

• e is an integer identifier of the ((k + 1)-molecule) present at this position in the graph.

• pF and pR hold the position of this element from each end of the chain, pF the rank in

the forward direction, pR the rank in the reverse direction.

• cF and cR hold the characters to be output when reading the chain in the forward and

reverse directions, respectively.

The second tuple array holds the topology of the graph. We label this array T , with tuples of

the form: 〈ch, dir, l, u, du, iu, ou, covu, v, dv, iv, ov, covv〉. The components are described below:

• ch is an integer identifier for the chain

www.manaraa.com

47

• u and v are integer identifiers for the endpoints of this chain.

• dir indicates if the chain is read forward or backwards when traversing the edge from u

to v.

• l indicates the length of the chain.

• du and dv are either in or out and indicate the direction of the edge at the corresponding

endpoints.

• iu and iv indicate the number of edges incident to u and v respectively with in directions.

• ou and ov indicate the number of edges incident to u and v respectively with out adja-

cencies.

• covu and covv indicate the average coverage of the edge near the endpoints u and v

respectively. What we mean by average coverage near the endpoints is defined by a

parameter to the assembler, coverage window. The coverage window indicates how many

consecutive (k + 1)-molecules, starting at the endpoint, should be used to calculate the

average coverage. If the length of the chain is smaller than coverage window, then the

entire chain is used to calculate the average.

We store two tuples for each edge in the string graph, with u and v interchanged. This

duplication of information allows us to find motifs more easily in the next section. In order to

create the two arrays of tuples described above, we must first integrate the list ranking solution

and the de Bruijn graph tuples using the following function, given in Algorithm 16.

Algorithm 16 : SetRank

〈u, e, cov, du, cu, ch, r1, r2〉
←−−−−−−
SetRank

A : 〈u, e, cov, du, cu〉

B : 〈u, a1, w1, e1, r1, a2, w2, e2, r2, m〉

for all 〈u, e, cov, du, cu〉 in A do

a← if (e1 < e2) then 1 else 2

b← if (e1 < e2) then 2 else 1
←−−−
Emit: 〈u, e, cov, du, cu, ea, ra, rb〉

end for

www.manaraa.com

48

Next we, give the algorithms for constructing the k-string graph, one for C and three for T .

We start with the generation of T . To do so, we arbitrarily assign the direction of the chain

from edge e1 to edge e2 as the forward direction of the chain. This assignment is necessary

to have a consistent interpretation of edge traversal when reasoning independently about the

topology tuple list and the chain tuple list. In the first function, we identify the nodes are the

endpoints of the chain by finding the node shared between edge with rank r1 = 0 and edge

with rank r1 = 1. To make this assignment easier, we first sort the bucket of chain tuples by r1.

We calculate the average coverage of (k +1)-molecules near the ends of the chain as previously

described with the introduction of the topology tuple. In the second and third functions, we

calculate the values for fields iu, ou, iv, and ov. These algorithms are give in Algorithms 17, 18,

and 19.

Algorithm 17 : ExtractToplogy

〈ch, dir, l, u, du, iu, ou, covu, v, dv, iv, ov, covv〉
←−−−−−−−−−−−−−−
ExtractTopology A : 〈u, e, cov, du, cu, ch, r1, r2〉

if |A| = 2 then
←−−−
Emit: 〈A[1].e1, F, |A|,A[1].u,A[1].du, 0, 0,A[1].cov,A[2].u,A[2].du, 0, 0,A[1].cov〉
←−−−
Emit: 〈A[1].e1, R, |A|,A[2].u,A[2].du, 0, 0,A[1].cov,A[1].u,A[1].du, 0, 0,A[1].cov〉

else

SortByR1(A)

start← if A[1].u = A[3].u or A[1].u = A[4].u then A[2] else A[1]

end← if A[|A|].u = A[|A| − 2].u or A[|A|].u = A[|A| − 3].u then A[|A| − 1] else A[|A|]

num← if |A| ÷ 2 < window then |A| else window × 2

cova ← (
∑num

i=1 A[i].cov)÷ num

covb ←
(

∑|A|
i=|A|−num

A[i].cov
)

÷ num
←−−−
Emit: 〈start.e, F, |A| ÷ 2, start.u, start.du, 0, 0, cova, end.u, end.du, 0, 0, covb〉←−−−
Emit: 〈start.e, R, |A| ÷ 2, end.u, end.du, 0, 0, covb, start.u, start.du, 0, 0, cova〉

end if

We give an algorithm for constructing chain representation. Importantly, to complete this

action, we must correctly assign the characters to be written when traversing the chain in the

forward and reverse directions. This requires remembering which of the two endpoints of an

edge was last visited when moving from edge to edge in the two-tuple-per edge representation.

It also requires, as was done in the function to construct the topology representation, that

www.manaraa.com

49

Algorithm 18 : AssignAdjacencyInfo

←−−−−−−−−−−−−−−−−−−
AssignAdjacencyInfo A : 〈ch, dir, l,u, du, iu, ou, covu, v, dv, iv, ov, covv〉

I ← 0

O ← 0

for all 〈ch, dir, l,u, du, iu, ou, covu, v, dv, iv, ov, covv〉 do

I ← if du = in then I + 1 else I

O ← if du = out then O + 1 else O

end for

for all 〈ch, dir, l,u, du, iu, ou, covu, v, dv, iv, ov, covv〉 do

iu ← I

ou ← O

end for

Algorithm 19 : ExcangeAdjacencyInfo

←−−−−−−−−−−−−−−−−−−−
ExcangeAdjacencyInfo A : 〈ch, dir, l, u, du, iu, ou, covu, v, dv, iv, ov, covv〉

A[1].iv ← A[2].iu
A[1].ov ← A[2].ou

A[2].iv ← A[1].iu
A[2].ov ← A[1].ou

we identify which node serves as the endpoint for the chain. Finally, although this function

requires that the bucket be in order according to r1, we assume that this order has already

been achieved by calling Algorithm 17. The chain construction method is given in Algorithm

20.

Finally, we have done the necessary groundwork to give a complete algorithm that converts

the de Bruijn graph representation, which we denoted as collection D, constructed from the

short sequence reads in Algorithm 5, to the k-string graph representation, denoted as collections

T and C. It is given in Algorithm 21.

2.7 Sequencing Errors

Up until this point, we have purposefully ignored the complications introduced by sequenc-

ing error in order to simplify the discussion of graph creation. Handling sequencing error,

however, is one of the most important tasks a fully realized assembler must achieve.

We assume when handling error that the data is reasonably error free; a 1% error rate is

www.manaraa.com

50

Algorithm 20 : ExtractChains

〈ch, e, pF , pR, cF , cR〉
←−−−−−−−−−−−−
ExtractChains A : 〈u, e, du, cu, ch, r1, r2〉

if |A| = 2 then
←−−−
Emit: 〈A[1].ch,A[1].e,A[1].r1,A[1].r2,A[1].cu,A[2].cu〉

else

last← if A[1].u = A[3].u or A[1].u = A[4].u then A[2] else A[1]

for i = 1 to |A| step 2 do

last← if A[i].u = last.u then A[i] else A[i + 1]

next← if A[i].u = last.u then A[i + 1] else A[i]
←−−−
Emit: 〈last.ch, last.e, last.r1, last.r2, next.cu, last.cu〉

last← next

end for

end if

Algorithm 21 : GenerateStringGraph

A
←−−−−−−−−−−−−−−−−−
EdgesToAdjacencies D

L
←−−−−−−−−−−−−−−−−−−−−−−−
AdjacenciesToListRanking A

ListRank(L)

R
←−−−−−−
SetRank L

T
←−−−−−−−−−−−−−−
ExtractTopology R

←−−−−−−−−−−−−−−−−−−
AssignAdjacencyInfo T
←−−−−−−−−−−−−−−−−−−−−
ExchangeAdjacencyInfo T

C
←−−−−−−−−−−−−
ExtractChains R

www.manaraa.com

51

assumed. Unlike overlap-layout-consensus methods, in which error handling is delegated to the

final consensus phase, any method that models assembly as finding a tour in the graph requires

that sequencing error be corrected before the even more complicated task of reconstructing

the repeat organization is tackled. This is because errors manifest themselves as false edges

in the graph, producing tangles. High coverage, randomness in error location, and a low error

rate are helpful when dealing with errors.

When assembling larger reads, Pevzner et al. proposed correcting errors in reads using

what they termed the spectral alignment[50] problem, for which one tries to edit each k-mer

in the data such that it is part of the spectrum of k-mers that occur in the genome. Batzglou

et al. [2] and Sundquist et al. [62] describe a method for solving this problem that relies

on multiple sequence alignment which is computationally expensive, while Chaisson et al. [7]

introduced a faster dynamic programming solution. Butler et al. solve the spectral alignment

problem over three spectra as a preprocessing phase for the ALLPATHs assembler.

While we think that solving the spectral alignment problem can be useful,2 we have not

as a part of this work explored solving this problem for large genomes. On the other hand, in

solving the error removal problem, we have given a method for discovering the (k+1)-spectrum

of the genome to be assembled, which is an important first step in any read editing method.

We will describe two ways of looking at error in short read data. The first is a simple

thresholding vision, and is presented primarily for theoretical interest. In practice, coverage is

not high enough or uniform enough to use such a method, and it ignores contextual information

that the second method presented, a graph editing method, takes into account. It does,

however, provide useful context for thinking about the frequencies of k-mers in the data.

2.7.1 Thresholding

We wish to find a threshold such that, with high probability, all k-molecules with fre-

quency below this threshold are artifacts due to sequencing errors. Correspondingly, all real

2Its usefulness is diminished when assembling very short reads, because k is very close to the read length l

and coverage is high, making any additional information gained after editing reads to likely be redundant. This
information is useful in resolving repeats of length greater than k.

www.manaraa.com

52

k-molecules should occur at a rate above this threshold. We make the simplifying assumption

that the sampling of the genome and the sequencing error are independent, uniform, random

processes. For the initial analysis, we ignore the increased frequencies of certain k-molecules

due to the presence of repeats, but address this subsequently.

Let g be the length of the genome, l be the length of each read, r be the substitution

error rate per base, and c be the coverage rate per base. We describe a k-molecule as a tuple

s = 〈p1, p2, ..., pk〉. An edit profile is the corresponding tuple 〈c1, c2, ..., ck〉 with ci ∈ [0, 3]. The

probability P (ci = 0) is 1 − r (i.e., base called correctly), while the probabilities P (ci = 1) =

P (ci = 2) = P (ci = 3) = r
3 (corresponding to each of the three incorrect base call possibilities).

We are interested in two classes of edit profiles: the identity profile, which has probability

(1 − r)k; and the profiles corresponding to a single edit, each with probability r
3(1 − r)(k−1).

We ignore other profiles given their low probabilities for practical values of r. The expected

rate at which the identity profile occurs at some location in the genome is:

λp =

(

c(l − k)

l

)

(1− r)k

We say call c(l−k)
l

the effective coverage of the genome. The expected rate at which a single

error edit profile occurs is:

λd =

(

c(l − k)

l

)

(r

3

)

(1− r)k−1

The number of times a particular k-molecule (the identity profile at a particular position)

is seen in the data is a Poisson process, with the expected number of k-molecules seen exactly

t times given by the equation:

Ct =

(

λp
te−λp

t!

)

g

The expected number of times a single base k-mer edit is seen exactly t times is defined

similarly:

Et =

(

λd
te−λd

t!

)

3kg

www.manaraa.com

53

Expected number of 30-mers, 300Mb, No Repeats

 5 10 15 20 25 30

Observance Rate

 50

 100

 150

 200

 250

 300

 350

C
ov

er
ag

e

Expected number of 30-mers, 60MB, 2x Repeats

 5 10 15 20 25 30

Observance Rate

 50

 100

 150

 200

 250

 300

 350

C
ov

er
ag

e

Expected number of 30-mers, 1MB, 4x Repeats

 5 10 15 20 25 30

Observance Rate

 50

 100

 150

 200

 250

 300

 350

C
ov

er
ag

e

Expected number of 30-mers, 20Kb, 30x Repeats

 5 10 15 20 25 30

Observance Rate

 50

 100

 150

 200

 250

 300

 350

C
ov

er
ag

e

Figure 2.4 Contour lines for Ct and Et when plotted against c and t. We
plot log10 Ct = {−2,−1, 0, and 2} for genome length 300Mb,
read length of 40bp, 1% error, and k=30. We also plot
log10 Et = {−2,−1, 0, and 2} for a hypothetical genome repeat
decomposition, superimposed against Ct. We show in the upper
left a plot of Ct for 300Mb of unique sequence. We show in the
upper right a plot for 60Mb of sequence repeated twice. We
show in the lower left a plot for 1Mb of sequence repeated 4
times. Finally, we show in the lower right a plot for 20Kb re-
peated 30 times. These plots indicate that with 1% sequencing
error rate, 30-mers can be differentiated using a simple thresh-
old method at 250-fold to 300-fold coverage.

www.manaraa.com

54

Given a genome of length g and an error rate r, we wish to find coverage c such that some

threshold τ separates good k-molecules from bad k-molecules with high probability. We create

a 3-dimensional plot of Ct and Et given c and τ , as shown in the upper left quadrant of Fig.

2.4. Observe that if the genome is unique, 200-fold coverage of length 40bp reads with 1%

error gives good separation of 30-mers.

We can update this analysis to consider sampling bias and repeats by modeling both as non-

uniform coverage of some genome with only unique k-molecules. We analyze the k-molecules

by separating this genome into sets of k-molecules with similar coverage. Our task is to find

a single threshold that separates real k-mers from errors in all sets simultaneously. As shown

in Fig. 2.4, for a genome of length 300Mb, a 1% error rate, and an average read length of 40,

we expect that 300-fold coverage will separate good and bad 30-mers for many repeats.

2.7.2 Graph Editing

As mentioned previously, the thresholding approach is far too simplistic to work well on

experimental short read data, although we have demonstrated that the theoretical analysis

described above is accurate for synthetic data with uniform random sampling of the genome

[30]. Still, in this work we are interested in a functional assembler, and therefore we present a

second method of error discovery, a graph editing method.

Graph editing was proposed by Pevzner et al. [49] to achieve the following goals: removal

if any errors left over after spectral alignment, editing the graph such that nearly identical

copies of repeats become a single edge, and dealing with tandem repeats. The achieved this

by removing what they termed bulges and whirls from the graph. Bulges were defined as short

undirected cycles in the graph and whirls as short directed cycles. They considered a cycle short

if its girth was less than some parameter g. They formally defined a combinatorial problem of

finding a maximum subgraph with large girth, where all short cycles have been removed. In

addition, they described the process of erosion corresponding to tip removal below, and the

removal of low coverage edges, which we call spurious links.

In the Velvet method for short sequence assembly [71], the authors construct the de Bruijn

www.manaraa.com

55

Figure 2.5 Motifs used to identify errors with coverage indicated by line
weight. From left to right: a tip, a bubble, and a spurious link.

graph from the uncorrected sequence data and then correct errors using a similar process of

finding and editing motifs in this graph. The complexity of the graph for large organisms and

high coverage makes this problematic as a stand alone approach, especially in the context of

the difficulty of finding parallel graph algorithms. At the same time, the thresholding approach

described above relies on very high coverage, while the graph editing approach combines cov-

erage information with contextual information in the k-string graph. This allows lowering the

threshold presented in the previous section if the coverage is not adequate to produce a sepa-

ration of real k-molecules and artifacts. It also allows a more robust method if the sequence

sampling of the genome is not uniform and at random.

We give a more simplistic approach to graph editing than given by the methods above, but

slightly more complicated than the method presented in the ABySS short sequence assembly

method. The three classes of error motifs: cycles, tips, and spurious links, remain in all four

error identification methods mentioned. The simplification we propose is necessary due to

the difficulty of path finding on a distributed graph or, alternatively, using our computational

framework.

When editing the graph, we wish to update the graph representation (collections T and

C). We use graph editing algorithms presented in Chapter 3 to this end. Their functionality

should be clear from their names, but the interested reader should return to this section after

reading Chapter 3 for a complete understanding of the following methods.

www.manaraa.com

56

A tip (as shown in Fig. 2.5) is identified by a node u in the graph that has a single adjacent

edge e with low coverage, and in which the far endpoint of the single edge (v) has an alternate

path. Given the topology tuple, this means that if dv = in then iv > 1 and ov ≥ 1, or if

dv = out then ov > 1 and iv ≥ 1. An algorithm for removing a tip from an adjacency list Au

is given as Algorithm 22. It uses the Delete algorithm defined in Chapter 3.

Algorithm 22 : RemoveTips(Au)

if |A| = 1 and A[1].l < T and A[1].covv < C and (A[1].dv = in and A[1].iv > 1) or

(A[1].dv = out and A[1].ov > 1) then

Delete(A[1])

end if

A singleton is identified by a node u in the graph that has a single adjacent edge e with low

coverage, and in which the far endpoint of the single edge (v) is only adjacent to e. Singleton

edges are likely formed by read errors that result in a read forming its own connected component

in the graph. We give an algorithm for removing a singleton adjacency list Au in Algorithm

23.

Algorithm 23 : RemoveSingletons(Au)

if |A| = 1 and A[1].l < T and A[1].covv < C and A[1].iv +A[1].ov = 1 then

Delete(A[1])

end if

As shown in Fig. 2.5, a bubble forms when a redundant edge connects two nodes. We

define a redundant edge as an edge that is the same length as some higher coverage edge (the

difference between the lengths must be less than some parameter W) and has coverage below

some threshold T . We give an algorithm for removing a redundant edge in an adjacency list

Au in Algorithm 24.

As shown in Fig. 2.5, a spurious link forms when an unneeded edge connects two nodes.

We define an unneeded edge as an edge that is shorter than some threshold L, has coverage

below some threshold T , and connects two nodes lying on some alternate paths. We give an

algorithm for removing an unneeded edge in an adjacency list Au in Algorithm 25.

We give an algorithm that emits the graph manipulation tuples (see Chapter 3) for the

www.manaraa.com

57

Algorithm 24 : RemoveBubbles(Au)

SortByV(A)

i← 1

repeat

j ← i

max← A[j].covu

maxj ← j

repeat

if max < A[j].covu then

max← A[j].covu

maxj ← j

end if

j ← j + 1

until j = |A| or A[i].v 6= A[j].v

j ← i

repeat

if j 6= maxj and |A[j].l −A[maxj].l| < W and A[j].covv < C then

Delete(A[j])

return

end if

j ← j + 1

until j = |A| or A[i].v 6= A[j].v

i← j

until i = |A|

Algorithm 25 : RemoveSpuriousLinks(Au)

for all e = 〈ch, dir, l, u, du, iu, ou, covu, v, dv, iv, ov, covv〉 in Au do

if l < T and covv < C and (dv = in and iv > 1 or dv = out and ov > 1) and (du = in and

iu > 1 or du = out and ou > 1)) then

Delete(e)

return

end if

end for

www.manaraa.com

58

edges that we delete. It allows a single node to select one edge to remove (this prevents

unintentional breaking apart of the graph during the editing process), as shown in Algorithm

26.

Algorithm 26 : GetDeletions

〈manip〉
←−−−−−−−−−−−
GetDeletions A : 〈ch, dir, l,u, du, iu, ou, covu, v, dv, iv, ov, covv〉

if ¬ RemoveTips(A)

else if ¬ RemoveSingletons(A)

else if ¬ RemoveBubbles(A)

else RemoveSpuriousLinks(A)

2.7.3 An Iterative Algorithm

After removing these edges, we might have created new chains in the graph. For this reason,

we wish to merge adjacent edges in the graph and update the graph representation. This

process involves identifying nodes that wish to center such operations, finding an independent

set of such operations, and then merging edges adjacent to this set of nodes. Again, this

process is described in detail in Chapter 3.

In the original Velvet paper, each type of correction, removing tips, removing bubbles,

and removing spurious links – were applied in a single pass. Instead, we propose an iterative

application of the above rules, as removing some erroneous edges that fit the above pattern

might uncover additional such edges. We find in the observed execution of the algorithm

on experimental data, four iterations are required before the algorithm exits. The iterative

algorithm is given in Algorithm 27.

Algorithm 27 : CleanErrors

repeat

s← |T |

MT
←−−−−−−−−−−−
GetDeletions(T)

MC
←−−−−−−−−−−−
GetDeletions(T)

T
←−−−−−−−−−−−−−−
UpdateTopology(T ,MT)

C
←−−−−−−−−−−−−
UpdateChains(C,MC)

ReduceGraph<I>

until s = |T |

www.manaraa.com

59

2.8 Endpoint Merging

The final graph editing operation described here is endpoint merging, for which we wish

find pairs of endpoints (nodes u and v with |Au| = 1 and |Av| = 1) whose ends uniquely

overlap by ovu,v ≥ h bases.3 We can think of the graph Gm = {Vm, Em} where u ∈ Vm if and

only if |Au| = 1 in the k-string graph, and (u, v) ∈ Em if and only if u and v have an overlap

as defined previously. We merge nodes u and v and their corresponding edges in the k-string

graph if and only if they are nodes in a connected component with cardinality two in G.

When concatenating chains on the edges connecting u and v, we insert temporary padding

characters. As shown in Fig. 2.6, we replace these placeholders after the chains have been

fully merged.

This merging of overlapping endpoints increases the effective coverage of the data from

(l−k)c
l

to (l−h)c
l

for most of the genome. If the low coverage region in the data happens to

corresponds to repeats of length less than k − 1 but greater than h that happen to occur

in multiple low coverage regions (thus on multiple endpoints of the graph), the size of the

connected component in the graph Gm is greater than two and we cannot merge.

We identify endpoints with Algorithm 28.

Algorithm 28 : GetEndpoint

〈ch, u, dir〉
←−−−−−−−−−−
GetEndpoint A : 〈ch, dir, l,u, du, iu, ou, covu, v, dv, iv, ov, covv〉

if |A| = 1 and (A[1].iv +A[1].ov > 1 or A[1].u < A[1].v) then
←−−−
Emit: 〈u, ch, dir〉

end if

Once endpoints have been identified, we wish to find the last (k +1)-molecule of the chain.

We proceed in two steps, first finding the molecule’s identifier, and then finding the molecule

using the mapping saved when applying the Assign function to the original list of (k + 1)-

molecules. For each (k+1)-molecule, we generate tuples for each of the (k+1−h) h-molecules.

We give this process in Algorithms 29 and 30.

We next identify unique endpoint pairs. First, we generate all pairs sharing some h-molecule

3Where log
4
(g) < h < k − 1, h a lower bound on the size of overlap we deem significant.

www.manaraa.com

60

Figure 2.6 The process of merging endpoints in the graph that uniquely
overlap by less than k−1 characters for k = 8. a) Two endpoints
to be merged. b) The suffix-prefix overlap. c) We pad one of
the two edges with X’s. d) We merge edges. e) The ranks of
characters used to clean the chain. f) The result of the merger.

Algorithm 29 : GetEndpointMoleculeID

〈u, e〉
←−−−−−−−−−−−−−−−−−−−−−
GetEndpointMoleculeID

A : 〈ch, e, pF , pR, cF , cR〉

B : 〈ch, u, dir〉

for all 〈ch, u, dir〉 in B do

e← if dir = F then B[1].e else B[|B|].e
←−−−
Emit: 〈u, e〉

end for

www.manaraa.com

61

Algorithm 30 : GetEndpointMolecule

〈u, (k + 1)-molecule, h-molecule〉
←−−−−−−−−−−−−−−−−−−−
GetEndpointMolecule

A : 〈e, (k + 1)-molecule〉

B : 〈u, e〉

count← k − h + 1

for all 〈u, e〉 in B do

M ← (k + 1)-molecule

for i = 1 to count do
←−−−
Emit: 〈u, M, M [i, i + h− 1]〉

end for

end for

as possible pairs. Then, for all pairs so identified, we compute the exact suffix-prefix overlap

length, and keep a pair if it has an exact overlap of length at least h (Algorithm 31). Finally,

we keep only pairs that are unique, as previously defined (Algorithms 32 and 33).

Algorithm 31 : GenerateEndpointPairs

〈u, v, overlap〉
←−−−−−−−−−−−−−−−−−−−−
GenerateEndpointPairs A : 〈u, (k + 1)-molecule, h-molecule〉

for i = 1 to |A| do

for j = i to |A| do

if A[i].u 6= A[j].u then

overlap← GetOverlap (A[i].(k + 1)-molecule,A[j].(k + 1)-molecule)

if overlap ≥ h then
←−−−
Emit: 〈A[i].u,A[j].u, overlap〉

end if

end if

end for

end for

We must bring together the tuples from T that represent the edges to be concatenated.

We would be able to merge all endpoints in parallel, except for the rare case when a single

edge wishes to be scaffolded on two ends. Thus we must take care when merging endpoints to

identify any far endpoints of the corresponding edges that are merge candidates and resolve

the conflicts (Algorithms 34). We choose between two candidate nodes u and v connected by

an edge in the k-string graph by selecting the node with the smaller identifier (Algorithm 35).

We merge two endpoints only if they both pass the conflict resolution process. To merge the

www.manaraa.com

62

Algorithm 32 : CheckEndpointU

〈u, v, overlap, del〉
←−−−−−−−−−−−−−−
CheckEndpointU A : 〈u, v, overlap〉

del← false

for all 〈u, v, overlap〉 do

del← if A[1].v 6= v then true else del

end for

for all 〈u, v, overlap〉 do
←−−−
Emit: 〈u, v, overlap, del〉

end for

Algorithm 33 : CheckEndpointV

〈u, v, overlap〉
←−−−−−−−−−−−−−−
CheckEndpointV A : 〈u,v, overlap, del〉

del2← false

for all 〈u, v, overlap, del〉 do

del2← if A[1].v 6= v then true else del2

end for

if ¬del2 then

for all 〈u, v, overlap, del〉 do

if ¬del then
←−−−
Emit: 〈u, v, overlap〉
←−−−
Emit: 〈v, u, overlap〉

end if

end for

end if

www.manaraa.com

63

nodes, we use the Connect function described in Chapter 3 (Algorithm 36).

Algorithm 34 : QueryNeighborhood

〈u, min, Eu, overlap〉
←−−−−−−−−−−−−−−−−−
QueryNeighborhood

A : 〈ch, dir, l,u, du, iu, ou, covu, v, dv, iv, ov, covv〉

B : 〈u, v, overlap〉

min←Min(B[1].u,B[1].v)
←−−−
Emit: 〈A[1].u, min,A[1],A[1].overlap〉
←−−−
Emit: 〈A[1].v, min,A[1],A[1].overlap〉

Algorithm 35 : KeepMinimum

〈u, min, Eu, overlap〉
←−−−−−−−−−−−−
KeepMinimum A : 〈u, min, Eu, overlap〉

if |A| = 1 then
←−−−
Emit: A[1]

else

if A[1].min < A[2].min then
←−−−
Emit: A[1]

else
←−−−
Emit: A[2]

end if

end if

Algorithm 36 : MergeEndpointPair

manip
←−−−−−−−−−−−−−−−−−
MergeEndpointPair A : 〈u,min, Eu, overlap〉

if |A| = 4 then

E1 ← A[1].Eu

E2 ← if A[2].Eu 6= E1 then A[2].Eu else A[3].Eu

Connect(E1, E2, k − 1−A[1].overlap)

end if

When connecting two nodes, we add (k − 1 − overlap) bases of padding between the

concatenated edges as the character ’X’, as shown in Fig. 2.6. We then update the chains after

merging, replacing the ’X’ placeholder with the appropriate character, as given by Algorithm

37.

Finally, we give in Algorithm 38 a full method for merging endpoints. We use the graph

editing support described in Chapter 3. The algorithm iterates until no additional merges have

www.manaraa.com

64

Algorithm 37 : CleanChains

←−−−−−−−−−−
CleanChains A : 〈ch, e, pF , pR, cF , cR〉

SortByPF (A)

for i = 1 to |A| do

A[i].cF ← if A[i].cF = X then Complement(A[i + k − 1].cR) else A[i].cF

A[i].cR ← if A[i].cR = X then Complement(A[i− k + 1].cF) else A[i].cR

end for

been identified, in order to successfully handle the rare case of conflicting candidate mergers

described previously.

Algorithm 38 : MergeEndpoints

repeat

s← |T |

E
←−−−−−−−−−−
GetEndpoint(T)

ID
←−−−−−−−−−−−−−−−−−−−−−
GetEndpointMoleculeID(C, E)

K
←−−−−−−−−−−−−−−−−−−−
GetEndpointMolecule(K, ID)

P
←−−−−−−−−−−−−−−−−−−−−
GenerateEndpointPairs(K)

P ′ ←−−−−−−−−−−−−−−CheckEndpointU(P)

P
←−−−−−−−−−−−−−−
CheckEndpointV(P ′)

O
←−−−−−−−−−−−−−−−−−
QueryNeighborhood(T ,P)

O′ ←−−−−−−−−−−−−KeepMinimum(O)

MT
←−−−−−−−−−−−−−−−−−
MergeEndpointPair(O′)

MC
←−−−−−−−−−−−−−−−−−
MergeEndpointPair(O′)

T
←−−−−−−−−−−−−−−
UpdateTopology(T ,MT)

C
←−−−−−−−−−−−−
UpdateChains(C,MC)←−−−−−−−−−−

CleanChains(C)

until s = |T |

2.9 Contigs as Edges

Once we have constructed the graph, compacted the chains, finished error identification,

and merged endpoints, we can output contigs as edge labels. In that sense we have already

achieved a limited assembly. However, we wish to mention a detail about the process of

reporting the contig in our graph representation, as the process is slightly complicated by the

fact that the chains record DNA strands offset by k− 1 characters. From each chain of length

l, we can reconstruct a DNA molecule with (l + k − 1) nucleotides, where l is the length of

www.manaraa.com

65

the chain. We do this by reading l nucleotides from the chain in one direction as s, reading

(k−1) nucleotides in the opposite direction as e, taking the reverse complement of e as e′, and

reporting the sequence as se′.

www.manaraa.com

66

CHAPTER 3. GRAPH SIMPLIFICATION AND TRAVERSAL

In this chapter, we describe two methods for assembly (one for the assembly of transcrip-

tomes, and the other for the assembly of genomes given paired reads) that demonstrate two

broad approaches for reconstructing a genome using an assembly graph. The first is graph

simplification, in which the number of nodes in the graph is reduced through the application

of a set of heuristic edit operations. This approach is explored by Pevzner in his EULER-DB

assembler [48] and in the ABySS short sequence assembler [60].1 After path simplification,

edges in the graph correspond to assembled contigs. The second is path traversal, in which

a path in the graph is found. We can traverse the graph using a whole graph approach,

such as the maximum flow/Chinese postman tour formulations described by Myers [44] and

Medvedev et. al. [41] and the Eulerian superpath problem proposed by Pevzner et al. [50], or

through a heuristic path discovery algorithm like the ones presented in the Velvet [71] paper

and the genome assembler described here. Using path traversal, an assembled contig is some

combination of graph labels on the path, in our case the concatenation of edge labels.

The primary strength of graph simplification is that it allows simple rules to be used to

process the graph. For example, reasonable rules like the loop reduction rule presented in

the first section of this chapter might, after application, unmask motifs in the graph that

can then be further simplified. In this way, by repeatedly applying simple transformations

to the graph we can ultimately process complex structures. Thus it is easier to design a

decision algorithm than in the case where we are processing the original graph as is, as done

in traversal methods. On the other hand, when we perform a graph simplification, we run the

risk of oversimplification, or applying a rule too liberally. This might introduce error in the

1Sometimes the lines are blurred. For example, the ABySS assembler finds and merges edges with strong
clone pair links, and then continues with a path-walking approach.

www.manaraa.com

67

assembly. For example, the loop reduction rule is valid as long as the loop is taken every time

that motif is is visited in a graph traversal; if there exists a traversal of the motif that skips

the loop, then the reduction is invalid.

The primary strength of a path traversal algorithm is that it often uses a more complete

picture of the data when making a decision about which edge to include next in a particular

contig, when compared to a simple reduction rule. On the other hand, it also has a more com-

plicated decision to make. As we show in the Chapter 4, for some relatively simple datasets, the

graph simplification and path traversal methods produce similar results, making this difference

partially academic. One benefit of the path traversal algorithm that we have developed is that

it easily incorporates any number of insertion lengths in the data set, and is in fact the first

sequence assembler designed with this feature in mind. As we show in Chapter 4, this feature

allows for a better assembly of highly repetitive genomes.

3.1 Transcriptome Assembly using Graph Simplification

The first method we describe is a method for the assembly of transcriptomes, using unpaired

sequence data. The transcriptome of an organism is the expressed messenger RNA (or mRNA)

present in the cell. An mRNA is a copy of a gene, often translated into protein via a molecular

machine called a ribosome.

In the cell, RNA polymerase (a molecular machine that synthesizes an RNA polymer) tran-

scribes mRNA from the DNA in the genome (hence the name transcriptome). The transcribed

RNA is then polyadenylated; a chain of deoxyadenine triphosphate (dATP) called the poly-A

tail is added to the 3’ end of the transcript. Each time a ribosome translates a protein from

the mRNA, this poly-A tail shortens, and after it has shortened substantially, the RNA is

destroyed.

To assemble a transcriptome, we do not directly assemble the RNA, but rather create a

complementary DNA copy of the RNA, called a cDNA. The cDNA is created by attaching

a primer to the poly-A tail of the mRNA and then an enzyme called reverse transcriptase

synthesizes a DNA molecule adjacent to the RNA. An enzyme called Rnase then removes the

www.manaraa.com

68

RNA. Finally, using a loop in one end of the DNA as a primer, a DNA polymerase synthesizes

a second strand of DNA. This DNA is cloned into bacteria, where it is replicated when the

bacteria reproduces.

In a transcriptome, the different genes of an organism can have vastly different expression

levels, or copy counts. We can normalize a cDNA library [61], causing the varying expression

levels among the genes to be equalized in the library. In our method, we make use of varying

expression levels; thus we wish the cDNA library to be unnormalized or only partially nor-

malized. Biologists can use unnormalized cDNA libraries as an alternative to microarrays for

measuring gene expression, although currently their cost is much higher.

We assume that we have constructed a k-string graph from a cDNA data set, using the

approach in Chapter 2. In the absence of repeats, each gene from the library would be in a

separate connected component of the k-string graph. However, the repeats in the library cause

genes to be glued together. Much of the repeat structure of the genome is hidden in the graph,

and as a result the length of all chains is less than the transcriptome length g. We wish to

perform a sequence of reductions that simultaneously simplifies the graph while expanding the

length of all chains to approach the size of g. We achieve this by manipulating the graph with

operations centered at nodes.

Consider the adjacency list for a node u, Au. We can partition Au into two sets Iu and

Ou, where ei ∈ Iu if and only if the direction of ei at u is pointing into u, and ei ∈ Ou if and

only if the direction of ei at u is pointing out of the u. When traversing the graph, if we enter

the node u along an edge that is in Iu, we must exit the node in an edge in Ou, and vice versa.

This means that for each ei ∈ Iu there are |Ou| possible continuations, and for each ej ∈ Ou

there are |Iu| possible continuations. Our goal in assembly by graph simplification is to reduce

these possibilities by pairing edges in Iu with edges in Ou.

Each operation used for simplification defines a set of deleted edges Du as a subset of either

Iu or Ou, and a set of modified edges Mu as a subset of the other partition. There is a onto

function from modified edges to deleted edges: Connect(Mu) → Du. In other words, we

associate each deleted edge with one or more modified edges, while we associate each modified

www.manaraa.com

69

edge with exactly one deleted edge. After graph simplification, we will have merged each

modified edge with its corresponding deleted edge. As a result, both the deleted edges and

modified edges are no longer in the adjacency list of u. The connection process involves the

following updates to the k-string graph representation: {T , C}:

1. We remove the tuples in T corresponding to the deleted edges.

2. We update the tuples in T corresponding to the modified edges with new endpoint and

length information, fields v, dv, covv, ov, iv, len, and dir.

3. We duplicate the chain tuples in C corresponding to the deleted edges, modifying the

fields id, r1, and r2 such that each new chain is concatenated to a chain corresponding

to a modified edge.

4. We update the chain tuples in C corresponding to the modified edges with new rank

information such that they are properly concatenated with the chains corresponding to

a deleted edge.

We will discuss the specific process by which we perform these operations within our com-

putational framework after we describe specific operations used by our graph simplification

method.

3.1.1 The Conflict Graph

We term the first operation Y-to-V reduction. Its repeated application results in a conflict

graph – a graph in which each node with multiple incident edges has multiple in and multiple

out edges. Medvedev et al. first named this graph in an assembly paper that used the overlap

string graph as the base graph [40], but they included the loop reduction in the rules used in

its generation. We feel that it is better to describe the loop reduction separately with other

heuristic transformations, as it can break the string graph property – that the concatenation

of the edges along some path in the graph be the genomic sequence.

Y-to-V Reduction: We show an example of this operation’s application in Fig. 3.1. We

define a Y-node as a node in which |Iu| = 1 and |Ou| > 1 (or vice versa). We consider the

www.manaraa.com

70

Figure 3.1 Three operations used in sequence assembly by graph simpli-
fication. We show the edge labels as characters in the initial
motif, and the resulting edge labels as a concatenation of these
characters. We show a Y-to-V reduction on the left. We show
a loop reduction in the center. We show an I reduction on the
right.

case where |Iu| = 1 and |Ou| > 1. We set Du ← Iu and Mu ← Ou. The operation empties

the adjacency list for u, and we consider u removed from the graph.

The Y-to-V reduction duplicates repeated elements from the transcriptome in the graph.

With each application, the total length of all edge labels in the graph approaches the actual

length of the transcriptome but remains bounded by said length. Repeated application of this

transformation results in a conflict graph. We show this by contradiction: Consider a graph

that can not be operated on by a Y-to-V operation that is not a conflict graph. Then there

exists a node u with multiple incident edges and a single in or out edge. u can center a Y-to-V

reduction.

Interestingly, we can answer some questions about the graph more easily before transform-

ing the graph to the conflict graph. Inspecting only the topology of the k-string graph, we

could identify which sequences were adjacent to the same genomic repeat. When we remove

this information from the conflict graph topology, we force inspection of edge labels to discover

this information. In another complicating side effect, molecules of length k + 1 no longer map

to unique locations in the graph. A k + 1 length molecule from a repeated region maps to

multiple locations after the transformation.

Importantly, the k-string graph property holds for the conflict graph: some concatenation

www.manaraa.com

71

Figure 3.2 Two examples of situations in which the application of loop
reduction produces a misassembly. On the left, we show an ex-
ample genome, with edges labeled with strings. On the right, we
show an example transcriptome with two alternative splicings
of genes.

of edge labels along a path in the graph corresponds to the genome. We see this by noticing

that every path in the k-string graph maps to a path in the conflict graph, and vice versa. This

holds because any two edges that are merged by the Y-to-V reduction rule must be traversed

together in any traversal of the k-string graph. It also follows from this observation that

constructing the conflict graph does not assist a path walking approach to assembly.

Still, constructing the conflict graph allows additional node-centered operations, such as

coverage matching described bellow, and our assembly by graph simplification approach relies

on it.

3.1.2 Heuristic Graph Simplification

Next we describe a number of rules that are heuristic in nature. Their application could

possibly break the k-string graph property, but they are reasonable rules in that we see that

it is likely they are correct much of the time. This is shown through experimental validation.

Loop Reduction: The loop reduction operation, as shown in Fig. 3.1, was described by

Medvedev as a part of the conflict graph generation. As shown in the figure, a loop node has

exactly four edges in its adjacency list with two incoming edges and two outgoing edges. One

of the incoming and outgoing edges is the same edge; it is a self loop. Exactly one traversal of

the loop motif visits all edges: enter the node u, take the loop, and then exit u.

We give an example of a simple genome in which applying the loop rule breaks the k-string

graph property in Fig. 3.2. The counter example demonstrates that an assumption made

www.manaraa.com

72

when applying the loop reduction rule does not have to be true; we do not necessarily want

to traverse the loop every time we enter node u, only at least one of these times. If we enter

node u multiple times during graph traversal, we might wish to bypass the loop during some

part of the traversal.

This is especially true when processing a transcriptome with alternative splicing. In many

eukaryotes, the mRNA goes through an additional phase after translation in which certain

regions of the translated mRNA can be thought of as being excised. This process is not

deterministic; in some mRNA, the pieces removed might be different than in other mRNA

molecules. Ultimately this process allows a smaller number of genes to encode for a larger

number of proteins. In humans, perhaps 80% of mRNAs undergo alternative splicing [39]. This

process results in a loop motif in the assembly graph. During the assembly of one transcript,

we might include the loop, while in the assembly of a second transcript, we might skip it.

In light of these observations, we improve the loop reduction rule considering coverage

information. Before applying the loop reduction rule, we perform a check on the coverage of

the three edges in the motif. If the loop edge has similar coverage to the other two edges, we

apply the rule. If it does not, we do not apply the reduction. We could implement similar in

many ways, but we choose to check that ratio of coverage on the loop to the coverage on the

entry edge is greater than some threshold.

Coverage Matching. We show the application of coverage matching in Fig. 3.3. We

developed this rule in [31] to use a characteristic of transcriptome data – that expressed genes

have varying coverage levels. In it, we attempt to match edges belonging to the same expressed

gene.

Consider incoming edge ei and outgoing edge ej both adjacent to node u. If |ei.covu −

ej .covu| < T , where T is some threshold, then we term ei and ej compatible. If ei is only

compatible with ej and ej is only compatible with ei, then we term them uniquely compatible.

We now define Du to be that set of all tuples ei in Iu that are uniquely compatible with some

edge ej in Ou and defineMu to be the set of all tuples ej in Ou that are uniquely compatible

with some edge ei in Iu. In this case, the function Connect(M) → D is both one-to-one and

www.manaraa.com

73

Figure 3.3 We show the coverage matching graph simplification operation,
followed by the Y-to-V operation, to demonstrate the iterative
nature of graph simplification. Line thickness corresponds to
coverage.

onto.

I Reduction: We show the application of this operation in Fig. 3.1. We define an I-node

as a node u with |Iu| = 1 and |Ou| = 1. This motif does not exist in the original k-string

graph after all chains of edges have been compacted, but might arise after other modifications

of the graph, such as the loop operation or edge removal during error correction. For the I

operation, we set Du ← Iu and Mu ← Ou ← Ou. Because the adjacency list for u becomes

empty, we consider u removed from the graph.

3.1.3 Graph Reduction on Independent Sets

We apply the described operations to the graph representation (T , C) using our computa-

tional framework. We proceed in a series of iterations. In each iteration we identify nodes that

center reductions and carry out those reductions on an independent set of such nodes.

As a first step we find nodes that center operations. We can identify all nodes matching

one or more of our reduction operations easily because the motifs are defined by the adjacency

information Au, which we can bring into a single bucket of our topology tuple array T if we

choose the node identifier u as the key. However, we cannot concurrently apply the operations

on all of these nodes. If nodes u and v both could center operations, and u and v are directly

www.manaraa.com

74

connected by an edge in the graph, the operations they center are incompatible. This is because

we might wish to remove u from the graph for the operation centered at u, while we might

want to make a new edge with u as an endpoint for the operation centered at v.

For this reason during each iteration we choose an independent set of the nodes identified

as centering valid operations. An independent set of nodes is a set of nodes such that the

induced graph has an empty edge set. Finding a maximum independent set is NP-hard [34]

(it is equivalent to finding the maximum sized clique in the complement graph). While a

randomized algorithm for finding a maximal independent set [42] could be adapted for our

purposes, we instead describe a heuristic method that chooses a good independent set assuming

that the nodes of the graph have similar degree and the node identifiers are randomly permuted.

This method is very simple; we choose a node that wishes to participate as a member of the

independent set only if its identifier is smaller than the identifiers of all of its neighbors wishing

to participate.

The modifications of the graph are handled through the creation of what we call topology

manipulation tuples and chain manipulation tuples. These tuples carry the information needed

to apply the operations to the graph tuple collections T and C respectively, as will become

clear when we present the psuedocode for the full graph manipulation method. A topology

manipulation tuple has the form 〈ch, u, delete, lnew, dnew, vold, vnew, dvnew, ivnew, ovnew,

covvnew〉, where:

• ch and u uniquely identify the tuple to be modified.

• delete is a boolean field used to declare if the edge is to be deleted

• lnew specifies the new length of the modified edge

• dnew specifies the direction to read the corresponding chain of the modified edge

• vold indicates which of the two endpoints to update

• vnew, dvnew, ivnew, ovnew, and covvnew specify the new information for that endpoint.

www.manaraa.com

75

A chain manipulation must carry information on how to update chains in C, and has the

form 〈ch, delete, reverse, chnew, offset, offset2, pad〉, where:

• ch uniquely identifies the chain to be modified.

• delete is a boolean field used to declare if the chain is to be deleted.

• reverse is a boolean field used to declare if the chain is to be reversed.

• offset is an integer offset to be added to all ranks in the tuples in the chain.

• offset2 is an integer offset to be added to all ranks in the chain when traversing the chain

in the second direction.

• pad specifies the number of dummy characters to be added to the end of this chain as

padding. For the discussion in this section, this value will always be 0. It only comes

into use during endpoint merging as described in Chapter 2.

To assist with generating the manipulation tuples described above, we use functions called

Delete and Connect, which take as input graph topology tuples from T and emit either

topology manipulation tuples or chain manipulation tuples, depending on the context in which

they were called. Thus we give two functions for Delete and Connect; the version used will be

clear from context. They are given as Algorithms 39, 40, 41, and 42.

Algorithm 39 : Delete(edge e)
←−−−
Emit: 〈e.ch, e.u, true, 0, 0, 0, 0, 0, 0, 0, 0〉
←−−−
Emit: 〈e.ch, e.v, true, 0, 0, 0, 0, 0, 0, 0, 0〉

Algorithm 40 : Delete(edge e)
←−−−
Emit: 〈e.ch, true, false, 0, 0, 0〉

Algorithm 41 : Connect(edge m, edge d, pad p)
←−−−
Emit: 〈m.ch, m.v, false, m.len + d.len + p, F, m.u, d.v, d.di, d.vi, d.oi, d.ci〉←−−−
Emit: 〈m.ch, d.v, false, m.len + d.len + p, R, m.u, d.v, d.di, d.vi, d.oi, d.ci〉

Delete(d)

www.manaraa.com

76

Algorithm 42 : Connect(edge m, edge d, pad p)

revm ← if m.d = F then false else true

revd ← if d.d = R then false else true
←−−−
Emit: 〈m.ch, false, revm, 0, d.l, 0〉
←−−−
Emit: 〈d.ch, false, revd, m.l, 0, p〉

We also describe algorithms for updating T and C given collections of manipulation tuples.

We allow at most one topology manipulation tuple for each topology tuple in T (Algorithm 43).

On the other hand we allow multiple chain manipulation tuples for each chain. We produce

one (possibly modified) copy of a chain for each chain manipulation tuple not marked as delete.

A copy is not made for a chain manipulation tuple marked as delete, however a tuple marked

as delete does not affect the copies requested by other manipulation tuples; the other tuples

take precedence. At the same time, if all manipulation tuples for a particular chain are marked

as delete, then that chain is not copied into the new set of chains (Algorithm 44.).

Algorithm 43 : UpdateTopology

〈ch, dir, l, u, du, iu, ou, covu, v, dv, iv, ov, covv〉
←−−−−−−−−−−−−−−
UpdateTopology

A : 〈ch, dir, l,u, du, iu, ou, covu, v, dv, iv, ov, covv〉

B : 〈ch,u, delete, l, dir, vold, vnew, dvnew , ivnew , ovnew , covvnew〉

if |B| = 0 then
←−−−
Emit: A[1]

else if ¬B[1].delete then

a← A[1]

b← B[1]

if a.u = b.vold then
←−−−
Emit: 〈b.ch, b.dir, b.l, b.vnew, b.dvnew , b.ivnew , b.ovnew , b.covvnew , a.v, a.dv, a.iv, a.ov, a.covv〉

else
←−−−
Emit: 〈b.ch, b.dir, b.l, a.u, a.du, a.iu, a.ou, a.covu, b.vnew, b.dvnew , b.ivnew , b.ovnew , b.covvnew〉

end if

end if

In general, we use the same algorithms when processing different graph manipulation rules

above. For this reason, we describe the algorithms using a notation for polymorphism similar

to that used for defining templates in the programming language C++. We begin by sending

messages to neighbors for use in identifying which nodes should center operations. We emit

www.manaraa.com

77

Algorithm 44 : UpdateChains

〈ch, cf , cr, r1, r2〉
←−−−−−−−−−−−−
UpdateChains

A : 〈ch, cf , cr, r1, r2〉

B : 〈ch, delete, reverse, chnew, offset1, offset2, pad〉

if |B| = 0 then

for all c in A do
←−−−
Emit: c

end for

else

for all 〈ch, delete, reverse, chnew, offset1, offset2, pad〉 in B do

if delete = false then

for all 〈ch, r1, r2, c1, c2〉 in A do

if reverse = false then
←−−−
Emit: 〈ch, r1 + offset, r2 + offset2 + pad, cF , cR〉

else
←−−−
Emit: 〈ch, r2 + offset2, r1 + offset1, cR, cF 〉

end if

end for

for i = 1 to pad do

if reverse = false then
←−−−
Emit: 〈ch, |A|+ i− 1, offset2 + pad− i,′ X ′,′ X ′〉

else
←−−−
Emit: 〈ch, offset2 + pad− i, |A|+ i− 1,′ X ′,′ X ′〉

end if

end for

end if

end for

end if

www.manaraa.com

78

pairs of node ids in Algorithm 45.

Algorithm 45 : AddressNeighbors<Op>

〈u1, u2〉
←−−−−−−−−−−−−−−−−−−−−−−
AddressNeighbors < Op > A : 〈ch, dir, l,u, du, iu, ou, covu, v, dv, iv, ov, covv〉

if Check<Op>(Au) then
←−−−
Emit: 〈u, u〉

for all 〈ch, dir, l,u, du, iu, ou, covu, v, dv, iv, ov, covv〉 do
←−−−
Emit: 〈v, u〉

end for

end if

Before we give the formal algorithms for identifying and applying the four graph operations

– YtoV, Loop, I, and Coverage – we give templatized algorithms for modifying the graph. We

give a single algorithm for both types of manipulation tuples, making use of the delete and

connect polymorphism defined previously. The type of tuple emitted by a particular call to

GetManipulation should be clear from context.

Algorithm 46 : GetManipulation<Op>

〈manip〉
←−−−−−−−−−−−−−−−−−−−−−
GetManipulation < Op >

A : 〈u1, u2〉

B : 〈ch, dir, l,u, du, iu, ou, covu, v, dv, iv, ov, covv〉

if |A| > 0 then

for all 〈u1, u2〉 in A do

if u2 < u1 then

return

end if

end for

Process<Op>(B)

end if

With the framework is in place, we give the specialized algorithms for identifying nodes

centering operations as Algorithms 49, 50, 51, and 52. We give the specialized algorithms for

processing the nodes centering operations as Algorithms 53, 54, 55, and 56.

www.manaraa.com

79

Algorithm 47 : ModifyGraph<Op>

repeat

A
←−−−−−−−−−−−−−−−−−−−−−−
AddressNeighbors < Op >(T)

MT
←−−−−−−−−−−−−−−−−−−−−−
GetManipulation < Op >(A, T)

MC
←−−−−−−−−−−−−−−−−−−−−−
GetManipulation < Op >(A, T)

T
←−−−−−−−−−−−−−−
UpdateTopology(T ,MT)

C
←−−−−−−−−−−−−
UpdateChains(C,MC)

until |A| = 0

Algorithm 48 : ReduceGraph

repeat

s← |T |

ModifiyGraph<YtoV>

ModifiyGraph<Loop>

ModifiyGraph<I>

ModifiyGraph<Coverage>

until |T | = s

Algorithm 49 : Check<YtoV>(Au)

i← 0

o← 0

for all 〈ch, dir, l,u, du, iu, ou, covu, v, dv, iv, ov, covv〉 in A do

i← if du = in then i + 1 else i

o← if du = out then o + 1 else o

end for

return o = 1 and i > 1 or o > 1 and i = 1

Algorithm 50 : Check<Loop>(Au)

i← 0

o← 0

l← −1

for all 〈ch, dir, l,u, du, iu, ou, covu, v, dv, iv, ov, covv〉 in A do

i← if du = in then i + 1 else i

o← if du = out then o + 1 else o

l← if u = v then u else l

end for

return o = 2 and i = 2 and l 6= −1

Algorithm 51 : Check<I>(Au)

return |A| = 2 and A[1].du 6= A[2].du

www.manaraa.com

80

Algorithm 52 : Check<Coverage>(Au)

declare I, O as multimaps

for i = 1 to |A| do

for j = 1 to |A| do

if i 6= j and A[i].du 6= A[j].du then

if A[i].du = in then

I[A[i].u].add(A[j].u)

O[A[j].u].add(A[i].u)

else

O[A[i].u].add(A[j].u)

I[A[j].u].add(A[i].u)

end if

end if

end for

end for

for all 〈ch, dir, l,u, du, iu, ou, covu, v, dv, iv, ov, covv〉 in A do

if |I[u]| = 1 and |O[I[u][1]]| = 1 then

return true

end if

end for

return false

Algorithm 53 : Process<YtoV>(Au)

i← 0

o← 0

for all 〈ch, dir, l,u, du, iu, ou, covu, v, dv, iv, ov, covv〉 in A do

i← if du = in then i + 1 else i

o← if du = out then o + 1 else o

end for

s← nil

for all e in A do

s← if (i = 1 and du = in) or (o = 1 and du = out) then e else s

end for

for all e in A do

if (i = 1 and du = out) or (o = 1 and du = in) then

Connect(s, e, 0)

end if

end for

www.manaraa.com

81

Algorithm 54 : Process<Loop>(Au)

l← nil

for all e in A do

l← if e.u = e.v then e else l

end for

for all e in A do

if e.du 6= l.du then

Connect(e, l, 0)

return

end if

end for

Algorithm 55 : Process<I>(Au)

Connect(A[1],A[2], 0)

Algorithm 56 : Process<Coverage>(Au)

declare I, O as multimaps

for i = 1 to |A| do

for j = 1 to |A| do

if i 6= j and A[i].du 6= A[j].du then

if A[i].du = in then

I[A[i]].add(A[j])

O[A[j]].add(A[i])

else

O[A[i]].add(A[j])

I[A[j]].add(A[i])

end if

end if

end for

end for

for all e in A do

if |I[e]| = 1 and |O[I[e][1]]| = 1 then

Connect(e, O[I[e][1]][1], 0)

end if

end for

www.manaraa.com

82

3.1.4 Graph Simplificaiton in EULER-DB

Before continuing with the next section, in which we describe our method for assembly

by graph traversal, we would like to spend a moment discussing an alternative approach to

assembling paired data presented by Pevzner et al. in the EULER-DB assembler, which was

the basis of the EULER-SR short read assembler. This approach has been shown to work

very well for the assembly of short genomes, and so we explore its merits and our reasons for

choosing a different approach.

The EULER-DB approach to processing reads and paired reads is as follows. For reads,

map the read to a path in the graph, and then peel that path out of the graph as a single edge.

For read pairs, the process works similarly, but takes into account the following. While a read

maps uniquely to a path in the graph, a read pair might map to multiple paths in the graph

that satisfy the separation distance expected by the reads. Thus, one peels a path from the

graph only if it is the only path separating two reads.

Path peeling is applied, a single path at a time, until there exists no path to be peeled. At

this point, assembled contigs correspond to edges in the graph.

We have chosen to use a graph traversal approach to assembly over a graph simplifica-

tion approach for processing clone pair information. The graph traversal approach gives a

more natural way to consider multiple sources of information, such as multiple paired reads

with different insertion lengths, while the simplification approach uses only a single piece of

information. Instead of relying on a single piece of information when making a decision, we

rely on multiple corroborating sources of information, and compare the support we have for a

particular path with the support we would expect to see given the data characteristics.

3.2 Genome Assembly using Graph Traversal

In our assembly by graph traversal approach, we find a path through the graph a single

edge at a time, greedily extending a path with an edge that best fits the distance constraints

in the data. We calculate an extension score for each candidate extension edge, by comparing

the observed support for that extension with the expected support for that extension. We then

www.manaraa.com

83

choose a candidate edge as the extension if its extension score is substantially better than other

candidates.

This method relies on the calculation of distant constraint features associated with pairs

of edges in the graph. These features come in two classes. The first, which we term exact

traversal constraints, are identified by processing reads in the data. By mapping a read into

the graph, we can identify that edge u and edge v should be separated by x bases in the graph

traversal. These constraints are roughly equivalent to the read mapping done in the EULER

assembler. The second class of feature we term (k + 1)-pair clusters. The clusters characterize

the observed distances between two edges in the graph. We compare these observed distances

to what is expected given the characteristics of the experimental data, giving a measure of

support for a particular edge. The extension score for a particular edge is calculated by

combining information from the features associated with the pairing of that edge and each

edge on the current path.

A prior approach most similar to the approach described here, although much simpler as

it is intended for data with a single insert length, is the breadcrumb algorithm proposed for

the Velvet assembler. When evaluating possible extensions, an edge is chosen if and only if it

is the only edge such that a pair in the data maps to that edge and the visited path.

3.2.1 Exact Traversal Constraints

The reads in the sequence data map to paths in the graph, and we translate this mapping

into a set of traversal constraints, of the the form 〈ei, ej , d〉, where ei and ej are edges in the

graph, and d is an integer in the range [0, l − k], where l is the maximum read length,k is the

parameter k chosen during graph construction, and d indicates the distance between the two

edges as seen in some read. We lose some information in forming the traversal constraints above,

as apposed to checking a particular path base-by-base, as is done in the EULER assembler.

A nice side affect of reducing the read mapping to distance constraints is that many reads

give the same distance constraint 〈ei, e2, d〉. In this case, we record only a single tuple for that

constraint, in effect removing much of the redundant information in the read data. We follow

www.manaraa.com

84

this pattern of removing redundant information when processing the paired reads in the next

section.

We describe how we form the exact constraint tuples from the read data and precisely how

we use the exact constraints within our traversal method, after first describing the second class

of distance constraints used by our traversal algorithm.

3.2.2 Paired Read Constraints

The reads in the sequence data come in pairs, each read pair coming from the two ends

of a sheared DNA fragment. As described in the introduction, fragment lengths fall into a

specified range, controlled during the creation of a DNA library. Our method allows for the

consideration of multiple such fragment ranges, which we call fragment types, and assumes

that pairs of reads are classified according to fragment type.

We allow in our assembler from zero to many fragment types, identified using integers in

the range [0, nz−1] , where nz is the number of fragment types. Each additional fragment type

gives more information when deciding among path extensions. We are not the first method

to describe using multiple fragment types in assembly. Chaison et al. [7] describe using two

fragment types with sizes of 2.5kb and 10kb respectively. The ALLPATHS assembler requires

that the reads come in three fragment types; a short type with length around 300 bases with

very minimal deviation,2 a medium fragment type with length 2kb, and a long fragment type

with length 10kb. Our assembler is the first to be built with the ability to make full use

of a fragment library with one to many fragment types, considering the multiple information

provided by the different types in concert when making assembly decisions.

In the bidirected string graph G = {E, V }, edges ei and ej correspond to genomic sequences

si and sj , each sequence occurring one or more times in the genome. If the genomic distance

between these two sequences falls within some fragment range, there is evidence of these two

sequences’ relative location in the sequence data. We summarize this information as a set of

features we term partial (k + 1)-pair clusters, and use these features to finish assembly.

2The ALLPATHS assembler, which finds all paths between edges connected by short insertion lengths,
requires very little error deviation (they demonstrate 1%), which might be unachievable in experimental data.

www.manaraa.com

85

Definition 3.2.1. A position in the bidirected graph G is a tuple of the form p = 〈e, f〉, with

e ∈ E, f ∈ N, 0 ≤ f < ‖e‖. The field f corresponds to a position along the edge in its forward

direction and ‖e‖ is the length of the edge.

Observation 3.2.2. By construction of the string graph, there is a bijection between valid

(k + 1)-molecules in the input and the set of all positions in the graph. Therefore we use p(m)

to denote the position corresponding to (k + 1)-molecule m, and p(m).e and p(m).f to denote

the corresponding fields.

Definition 3.2.3. A read pair is a tuple of the form 〈R1, R2, z〉, where R1 and R2 are the

reads and z is the fragment type.

Definition 3.2.4. A (k + 1)-pair is a tuple of the form π = 〈m1, m2, z〉, where m1 and m2

are molecules.

Observation 3.2.5. We use ⌈z⌉ to denote the largest possible distance between observed (k+1)-

molecules when reading the ends of a fragment of type z, and ⌊z⌋ to denote the smallest possible

distance. If zmin is the minimum length of fragment type z, zmax the maximum fragment length,

and l the maximum read length, ⌊z⌋ = zmin − 2l + (k + 1), and ⌈z⌉ = zmax − (k + 1).

Definition 3.2.6. The set of all (k +1)-pairs in the input is the set Π = {π1, π2, ..., πM}, with

〈m1, m2, z〉 ∈ Π if and only if there exists some read pair 〈R1, R2, z〉 with m1 a sub-molecule

of R1 and m2 a sub-molecule of R2.

Observation 3.2.7. When we allow duplicates, M = O
(

N(l − k)2
)

, where N is the number

of reads and l the maximum read length.

Definition 3.2.8. An edge traversal is a tuple of the form t = 〈e, d〉, with e ∈ E and

d ∈ {F, R}, with F corresponding to traversing the edge in the forward direction, and R in the

reverse direction.

Definition 3.2.9. A path is a sequence of edge traversals: T = 〈t1, t2, ..., tl〉.

Observation 3.2.10. In general, edges in the graph can be traversed multiple times, so there

could exist ti and tj, i 6= j and ei = ej. We always assume that paths being discussed are valid

walks in the string graph, as described in the previous section.

www.manaraa.com

86

Consider some πx = 〈m1x, m2x, zx〉 and traversal T . Let Lx = {ti|ei = p(m1x).e} be the

set of edge traversals in T to which m1x maps. Let Rx = {tj |ej = p(m2x).e} be the set of all

edge traversals to which m2x maps.

Definition 3.2.11. For each 〈ti, tj〉 ∈ Lx ×Rx, i < j, the observed distance of πx is:

d(πx, ti, tj) =

j−1
∑

h=i+1

‖eh‖+ σi + σj

σi =

p(m1x).f if di = R

‖p(m1x).e‖ − p(m1x).f if di = F

σj =

p(m2x).f if dj = F

‖p(m2x).e‖ − p(m2x).f if dj = R

Definition 3.2.12. πx supports T using ti and tj if and only if ⌊zx⌋ ≤ d(πx, ti, tj) and

⌈zx⌉ ≥ d(πx, ti, tj).

Definition 3.2.13. ti and tj are supported by Π if and only if there exists some πx that

supports the path using ti and tj.

Observation 3.2.14. We call this support weak because the genomic distance between ti and

tj can differ from the path distance by as much as ⌈zx⌉ − ⌊zx⌋.

Definition 3.2.15. The maximum distance expectation for ti and tj and some fragment

type z, denoted by ⌈(ti, tj , z)⌉, is calculated as min
(

⌈z⌉,
∑j

h=i ‖eh‖
)

.

Definition 3.2.16. The minimum distance expectation for ti and tj and some fragment

type z, denoted by ⌊(ti, tj , z)⌋, is calculated as max
(

⌊z⌋,
∑j−1

h=i+1 ‖eh‖
)

.

In general, multiple (k + 1)-pairs with the same fragment type can support a pair of edge

traversals on a path. Moreover, if the path is correct, we would expect that, for all zh, support

for much of the range [⌊(ti, tj , zh)⌋, ⌈(ti, tj , zh)⌉] to be found in the data, assuming the edges

are not very short. We wish to formalize this support expectation.

www.manaraa.com

87

Figure 3.4 Some examples of path extension candidates, with (k + 1)-pair
clusters for two fragment types shown. In a), we show pro-
totypical strong cluster support. In b), we show (k + 1)-pair
cluster support for the extension of a repeat that occurs twice
in quick succession in the path. In c), we show an obvious ex-
ample of lack of support. Finally, in d) we show an example of
lack of strong support for the extension, even though the cluster
overlaps with expected distance constraints.

Definition 3.2.17. A (k +1)-pair cluster is a set of observed distances for ti, tj, and z. We

summarize a cluster using the range α(ti, tj , z) = [min, max], with min being the minimum

observed distance in the cluster and max the maximum observed distance.

We construct the (k+1)-pair clusters starting from all single element sets taken from Π and

proceeding in two phases of merging. In the first phase, we perform single linkage clustering,

merging two sets αx(ti, tj , z) and αy(ti, tj , z) if and only if (maxx + R > miny) ∧ (minx −

R < maxy), for some parameter R. In the second stage, we order all clusters by min, and

then, considering all consecutive pairs (αx(ti, tj , z), αy(ti, tj , z)) in this ordered set, merge if

maxy −minx < ⌈z⌉.

Definition 3.2.18. ti and tj are strongly supported by a (k + 1)-pair cluster α(ti, tj , z) if

αmin < ⌊(ti, tj , z)⌋+ T and αmax > ⌈(ti, tj , z)⌉ − T , with T a sensitivity parameter.

The preceding definition is carefully chosen to allow for an edge to be strongly supported

even if, for example, ti is a repeat and occurs at multiple distances from tj in the genome. For

a visual intuition behind the strongly supported definition, see Fig. 3.4.

In practice, we wish to be able to answer the question of whether ti and tj are strongly

supported without having to consider the entire set Π when analyzing a particular path, but

www.manaraa.com

88

instead preprocess the raw paired reads to extract the necessary features. This needs to be

done without any a priori knowledge of the nature of the eventual traversal T . In other words,

we do not know either the distance between pairs of edges or their relative orientations at the

time of summarization.

We achieve this goal by calculating, for each tuple 〈ei, ej , z〉, the ranges of the partial sum

σi +σj corresponding to each (k +1)-pair cluster. As we don’t know the relative orientation of

the edges at the time of summation, we track the range of σi+σj for all four possible orientations

of edges, using ffmin and ffmax to denote this range when ei and ej are traversed forwards,

with frmin, frmax, rfmin, rfmax, rrmin, and rrmax denoting the ranges of other orientations.

Definition 3.2.19. A partial (k + 1)-pair cluster is a summarization of a set of observed

partial sums σi +σj for edges ei, ej and fragment type z, denoted as α̂(ei, ej , z) = 〈rfmin, rfmax,

ffmin, ffmax〉.

Observation 3.2.20. We can calculate the value of rrmin as ‖ei‖+ ‖ej‖ − ffmax, and rrmax,

frmin, and can calculate frmax similarly.

Given a traversal T with edges ti and tj , we can calculate the (k+1)-pair clusters αx(ti, tj , z)

corresponding to partial (k + 1)-pair cluster α̂y(ei, ej , z). If ti.f = F and tj .f = F , minx =

ffminy +
∑j−1

h=i+1 ‖eh‖ and maxx = ffmaxy +
∑j−1

h=i+1 ‖eh‖. The other orientations of ti and tj

are handled similarly.

3.2.3 Generating Exact and Approximate Distance Constraints

In describing method for computing exact constraints and partial (k+1)-pair clusters from

Π, we again use our computational framework. We generate both types of constraints at

the same time, storing the constraints in tuples of the form 〈e1, e2, z,ffmin, ffmax,frmin,frmax〉,

where z is the fragment type in the case of paired constraints. In the case of exact traversal

constraints, z is the exact distance constraint for the pair offset by the number of fragment

types: z = d + nz − 1, and ffmin = ffmax and frmin = frmax.

Assume that we have, for each (k + 1)-molecule m, a mapping to that molecule’s corre-

sponding identifier, originally given by the Assign function. We construct a constraint by

www.manaraa.com

89

combining this information with information in the chains C. First, we generate tuples of the

form 〈m1, m2, z〉, where z is the fragment type in the case of paired reads, or the exact distance

constraint d offset by nz − 1 : z = d + nz − 1. The generation algorithm is given as Algorithm

57.

Algorithm 57 : GeneratePairs

〈m1, m2, t〉
←−−−−−−−−−−−−
GeneratePairs A : 〈r1, r2, z〉

c1 ← |r1| − k − 1

c2 ← |r1| − k − 1

for i = 1 to c1 do

for j = i to c1 do
←−−−
Emit: 〈r1[i, i + k + 1], r1[j, j + k + 1], i− j + nz〉

end for

end for

for i = 1 to c2 do

for j = i to c2 do
←−−−
Emit: 〈r2[i, i + k + 1], r2[j, j + k + 1], i− j + nz〉

end for

end for

for i = 1 to c1 do

for j = i to c2 do
←−−−
Emit: 〈r1[i, i + k + 1], r2[j, j + k + 1], z〉

end for

end for

Next, we wish to map (k + 1)-molecules to positions in the graph. To do this, we will first

map the molecules to ids (Algorithms 58 and 59). We then find the first position in the graph

using Algorithm 60.

Algorithm 58 : GetFirstID

〈e1, m2, z〉
←−−−−−−−−−
GetFirstID

A : 〈m, e〉

B : 〈m1, m2, z〉

←−−−
Emit: 〈e, m2, z〉

We store the partial (k + 1) pair clusters recording the smaller of the two chain identifiers

in the field ch1 and the larger of the two identifiers in the field ch2. As mentioned above, we

track ranges for two of the four possible orientations of pairs of edges, as shown in Algorithm

www.manaraa.com

90

Algorithm 59 : GetSecondID

〈e1, e2, z〉
←−−−−−−−−−−−
GetSecondID

A : 〈m, e〉

B : 〈e1,m2, z〉

←−−−
Emit: 〈e1, e, z〉

Algorithm 60 : GetFirstPosition

〈ch1, ra, rb, e2, z〉
←−−−−−−−−−−−−−−
GetFirstPosition

A : 〈ch, e, r1, r2, cF , cR〉

B : 〈e1, e2, z〉

←−−−
Emit: 〈ch, r1, r2, e2, z〉

61.

Algorithm 61 : GetConstraint

〈ch1, ch2, z, ffmin, ffmax, frmin, frmax〉
←−−−−−−−−−−−−
GetConstraint

A : 〈ch, e, r1, r2, cF , cR〉

B : 〈ch1, ra, rb, e2, z〉

if ch1 < ch then
←−−−
Emit: 〈ch1, ch, z, rb + r1, rb + r1, rb + r2, rb + r2〉

else
←−−−
Emit: 〈ch1, ch, z, r2 + ra, r2 + ra, r2 + rb, r2 + rb〉

end if

The first reduction algorithm finds a single linkage clustering of the paired constraint. Each

cluster is uniquely identified by the triple 〈ch1, ch2, z〉. The clusters we find will be the same

independent of the four possible orientations. Therefore, to find clusters that should be merged,

we first sort all tuples by ffmin and then proceed with Algorithm 62.

After all stages have completed, we consider each bucket of partial (k+1)-pair clusters with

equivalent (eIDi
, eIDj

, z), and merge partial (k +1)-pair clusters in accordance with the phase

two merging rule described above, updating all minimums and maximums. As the clusters are

sorted by ffmin, we can achieve this with a single pass through the array on each processor.

This algorithm is given as Algorithm 63.

As when processing the reads the first time to construct the de Bruijn graph, we process

the paired reads in stages to overcome memory limitations. For this reason our constraint

generation algorithm, given as Algorithm 64, is structurally similar to Algorithm 3.

www.manaraa.com

91

Algorithm 62 : ReduceConstraints

〈ch1, ch2, z, ffmin, ffmax, frmin, frmax〉
←−−−−−−−−−−−−−−−−
ReduceConstraints

A : 〈ch1, ch2, z,ffmin, ffmax, frmin, frmax〉

B : 〈ch1, ch2, z,ffmin, ffmax, frmin, frmax〉

SortByFFMin(A)

SortByFFMin(B)

i← 1

j ← 1

repeat

if i ≤ |A| and j ≤ |B| then

if A[i].ffmin < B[j].ffmin then

cl← A[i]

i← i + 1

else

cl← B[j]

j ← j + 1

end if

else if i ≤ |A| then

cl← A[i]

i← i + 1

else

cl← B[i]

j ← j + 1

end if

repeat

while i ≤ |A| and A[i].ffmin ≤ cl.ffmax + D do

cl.ffmax ←Max(cl.ffmax,A[i].ffmax)

cl.frmax ←Max(cl.frmax,A[i].frmax)

cl.frmin ←Min(cl.frmin,A[i].frmin)

i← i + 1

end while

while j ≤ |B| and B[j].ffmin ≤ cl.ffmax + D do

cl.ffmax ←Max(cl.ffmax,B[j].ffmax)

cl.frmax ←Max(cl.frmax,B[j].frmax)

cl.frmin ←Min(cl.frmin,B[j].frmin)

j ← j + 1

end while

until (i > |A| or A[i].ffmin > cl.ffmax + D) and (j > |B| or B[j].ffmin > cl.ffmax + D)
←−−−
Emit: cl

until i > |A| and j > |B|

www.manaraa.com

92

Algorithm 63 : ReduceConstraintsII

〈ch1, ch2, z, ffmin, ffmax, frmin, frmax〉
←−−−−−−−−−−−−−−−−−
ReduceConstraintsII

A : 〈ch1, ch2, z,ffmin, ffmax, frmin, frmax〉

SortByFFMin(A)

i← 1

repeat

cl← A[i]

i← i + 1

while i ≤ |A| and A[i].ffmax − cl.ffmin ≤ (⌈z⌉ − ⌊z⌋) do

cl.ffmax ←Max(cl.ffmax,A[i].ffmax)

cl.frmax ←Max(cl.frmax,A[i].frmax)

cl.frmin ←Min(cl.frmin,A[i].frmin)

i← i + 1

end while
←−−−
Emit: cl

until i > |A| and j > |B|

Algorithm 64 : ReadPairs

B ← ∅

for s from 1 to S do

P ← GetPairs(s)

I
←−−−−−−−−−
GetFirstID(M,P)

I ′
←−−−−−−−−−−−
GetSecondID(M, I)

P
←−−−−−−−−−−−−−−
GetFirstPosition(C, I ′)

B′
←−−−−−−−−−−−−
GetConstraint(C,P)

B
←−−−−−−−−−−−−−−−−
ReduceConstraints(B,B′)

end for

B
←−−−−−−−−−−−−−−−−−
ReduceConstraintsII(B)

www.manaraa.com

93

3.2.4 Graph Traversal

Given the exact traversal constraints from Section 3.2.1 and the partial (k+1)-pair clusters

from Section 3.2.2, we wish to find valid walks through the bidirected string graph.

We assign to each edge e an expected traversal bound b(e) by analyzing coverage. When

traversing the graph, we keep track of the number of times an edge has been traversed as c(e),

and use this information in conjunction with the bound to choose between ambiguous options.

Additionally, we restrict traversal to edges with c(e) < 2b(e). Initially c(e) = 0 for all edges.

Our method for traversing the graph is one of path extension. Given a likely partial traversal

of the graph as a path T = 〈t1, t2, ...tl〉 with total length greater than the maximum fragment

size, we can determine, by looking at the structure of the string graph, a set of possible edge

traversals that can serve as extensions of this path: E = {t′1, t
′
2, ...t

′
h}, t

′
j = 〈ej , dj〉. We describe

a heuristic method for choosing the best extension from E by choosing the candidate with the

most support among the exact distance constraints and (k + 1)-pair clusters.

First, we will describe the score we create for the simpler exact distance constraints. Specif-

ically, consider some extension t′j . Let T ′ be the path created by extending T with t′j . We

denote the distance between ti and the end of the path as d(ti).

Definition 3.2.21. The exact expected support for ti and t′j is:

γe
ij =

1 if d(ti) < l − k −Be

0 otherwise

Where Be is a parameter.

Definition 3.2.22. The exact observed support for ti and t′j is:

ωe
ij =

1 if d(ti) = z + nz for some α(ti, t
′
j , z)

0 otherwise

Definition 3.2.23. The exact extension score of a candidate t′j (for
∑

i γ
e
ij > 0) is defined

as:

www.manaraa.com

94

0 ≤ ES(t′j) =

∑

i ω
e
ij

∑

i γ
e
ij

≤ 1

The score derived from (k + 1)-pair clusters is defined similarly. Again, consider some

extension t′j . Let T ′ be the path created by extending T with t′j . We describe the process

using (k + 1)-pair clusters, as it is more natural to do so; these are derived from the partial

(k + 1)-pair clusters for any path T .

Definition 3.2.24. The approximate expected support for ti, t′j, and fragment type zv

is:

γijv =

γ̂a
ijv if

(

⌊(ti, t
′
j , zv)⌋ < (⌈zv⌉ −Ba)

)

∧
(

⌈(ti, t
′
j , zv)⌉ > (⌊zv⌋+ Ba)

)

γ̂a
ijv if ti and t′j are strongly supported by some α(ti, t

′
j , zv)

0 otherwise

γ̂a
ijv = ⌈(ti, t

′
j , zv)⌉ − ⌊(ti, t

′
j , zv)⌋

Where Ba is a parameter.

Definition 3.2.25. The approximate observed support for ti, t′j and fragment type zv is:

ωa
ijv =

ω̂a
ijv if ti and t′j are strongly supported by some α(ti, t

′
j , zv)

0 otherwise

ω̂a
ijv = min

(

⌈(t′i, t
′
j , zv)⌉, α.max

)

−max
(

⌊(t′i, t
′
j , zv)⌋, α.min

)

Definition 3.2.26. The approximate extension score of a candidate t′j (for
∑

i,v γa
ijv > 0)

is defined as:

0 ≤ AS(t′j) =

∑

i,v ωa
ijv

∑

i,v γa
ijv

≤ 1

We say that an extension t′j is unambiguous if AS(t′j) > 0 and ES(t′j) > 0 and, for all w

with 0 < w ≤ h and w 6= j, AS(t′w)
AS(t′j)

< Da and AS(t′w)
AS(t′j)

< De (for some specificity parameters Da

and De). If there exists an extension t′j that is unambiguous, then we append t′j to the path and

continue with traversal. If t′j does not exist, we consider only those edges with b(t′j) > c(t′j),

www.manaraa.com

95

and look for the existence of an unambiguous extension t̂′j . If neither t′j nor t̂′j exist, we stop

extension.

We seed paths with some edge e with ‖e‖ greater than the maximum fragment size and

c(e) = 0. As it is not obvious, for example, that really long edges are better than moderately

long edges as starting points, we simply choose from candidate starting points in increasing

order of edge identifier, until none remain.

www.manaraa.com

96

CHAPTER 4. EXPERIMENTAL RESULTS

In this chapter, we provide the results obtained from our assembler on both experimental

and synthetic data. Synthetic data is generated from a known genome, attempting to mimic

the properties of experimental data. Experimental data is generated by the Illumina sequenc-

ing platform. We discuss our software implementation, data preparation, running time, and

assembly quality.

4.1 Software Implementation

We implemented our method using the programming language C++ and the Message

Passing Interface (MPI) parallel programming library. We chose C++ because it has well

maintained MPI implementations such as MPICH2 [64] and OpenMPI [16] and for fast exe-

cution speed after compilation. The software is comprised of approximately 51 files consisting

of nearly 12,000 lines and 350,000 characters.

We make heavy use of C++ templates. A C++ template allows the specialization of

a particular class or function when combined with different external components, as long as

those components adhere to an interface contract. We choose templates over other options such

as base classes and inheritance for three primary reasons. One, templates provide performance

improvements at the cost of executable size due to a specialized version of the templated class

being created for each new component with which it is used. Two, templates allow the choice

of either functors (objects acting and functions) or function pointers. Three, templates allow

seamless integration with the C++ Standard Template Library (STL).

Although untested, the software was designed such that the user can specify any STL

random access container, as long as that container supports being used by an STL sort function.

www.manaraa.com

97

We chose the standard STL vector for testing the assembler, although other possibilities such as

the Standard Template Library for Extra Large Data Sets (STXXL) [10] might be substituted.

Achieving a genome assembly in secondary storage by integrating with a library such as STXXL

is an area of future research.

We find debugging a parallel software implementation challenging, and the organization

of our method around a small set of computational concepts simplifies this task considerably,

as there are only a few parallel entry points. Specifically, the parallelism in our software is

limited to four functions. These functions are blocking and collective: execution halts until all

processors call a particular function.

• Connect: Sorts a distributed array of tuples (C++ structs).

• Distribute: Redistributes the tuples in distributed array B according to the distribution

of a second array A.

• Assign: Using a prefix-sum1, counts the number of unique keys in a distributed array

as N and replaces the field ID in each tuple with a unique key in the range [0, N).

• GetGlobalCount: Using a prefix-sum, counts the number of elements in a distributed

array.

Finally, our implementation requires that all data in the distributed array be stored in

a single memory block, without additional pointers to other locations in the heap. In other

words, we do not allow a member of a struct used by our library to be a pointer to memory

allocated at runtime. This choice was made to simplify the implementation as it allows us

to skip the complex marshalling and unmarshalling that would otherwise be needed.2 A side

effect of this choice is that we choose k at compile time rather than run time.

1As described in Section 1.3.2
2Marshalling (also known as serialization) requires that multiple memory blocks composing a single logical

object be copied into a single memory block in preparation for transfer across a network. Unmarshalling
(deserialization) is the inverse process.

www.manaraa.com

98

4.2 Experimental Data Acquisition and Preparation

We downloaded experimental Illumina data from the National Center for Biotechnology

Information (NCBI) short read archive [68], publicly available from ftp://ftp.ncbi.nih.gov.

A part of the International Nucleotide Sequence Database Collaboration (INSDC), the NCBI

short read archive provides short read data using a data model, data transfer protocol, and

accession space (project identifier) shared with other members of the INSDC. Because of the

shear size of the short read data and its static nature (once uploaded into the archive, it tends

not to change), the data is stored in flat files, in a directory structure aligned with various

sequencing projects.

The short read archive provides data originating from Illumina sequencers in the FastaQ

file format, an ASCII file format in which each read is given by four lines. The first line starts

with a ‘@’ character followed by the read name and other identifying information such as the

lane and coordinates of the blot being read. The second line lists the read using the characters

{A, G, C, T}. The third line starts with a ‘+’ character followed by a second identifier. The

last line lists the quality scores, with Q ranging from 0 to 40, given as ASCII characters with

numerical values equal to Q + 33.

We seen in the archive multiple organizations of paired reads. In some cases, they are

interleaved in the same file. In some cases, they are appended together as a single longer read.

In some cases, they appear on the same line in two separate FastaQ files.

We convert the data from FastaQ format into a proprietary binary file format. As the

IBM Blue Gene/L on which we test uses a PowerPC processor that expects a big endian byte

order, and development and testing are done on Intel x86 processors that expect little endian,

converting between the two representations is important. We store all data in little endian byte

order in our binary format, and covert as necessary when reading from a big endian machine.

We give the header format of our file using the notation [NumBytes : Descriptor].

[4 : HeaderSize][8 : FileSize][4 : RunSize][4 : 1Min][4 : 1Max]...[4 : kMin][4 : kMax]

www.manaraa.com

99

We record each paired read in a block of uniform size, known as the run size. We choose

a uniform run size because this allows us to exactly decompose file reading between multiple

processors through a calculated offset. We calculate the run size by first calculating the amount

of space needed to record a particular sequence when two bytes are used per base. A 36 base

read, for instance, would require 9 bytes. The run size for this example would be 24 bytes, in

the following format:

[2 : PairType][2 : ReadLength][9 : ReadData][2 : ReadLength][9 : ReadData]

4.2.1 Data Trimming

We analyzed raw data composed of 36 base reads from a single Illumina run from the

Michael Smith Genome Sciences Center to better understand data trimming. The quality

score for each nucleotide in the analyzed data is a vector 〈QA, QC , QG, QT 〉, where QN is the

quality score for calling the nucleotide N , calculated using the following formula, where p is

the probability of the nucleotide being N :3

Q = 10log10

(

p

1− p

)

The Q values are integers in the range [−40, 40], with Q = −40↔ p = 0, Q = 0↔ p = .5

and Q = 40 ↔ p = 1. To measure the goodness of a base call, we look at the difference

between the highest Q value and the second highest Q value. We want this difference to be

significant to consider the call to be valid. For our analysis we chose to consider a difference

greater than 10 between the maximum Q value and second highest Q value to be ambiguous.

This corresponds to an underlying probability difference of between .4 and .5.

To adequately trim Illumina data, we are interested in three questions about the Illumina

sequence quality. First, what is the probability that the base call is ambiguous at a particular

position? Second, what is the probability that a base call is ambiguous at a particular position,

given no ambiguous base calls in a previous position? Third, what is the probability that a

3The quality scores in the FastaQ files that range from 0 to 40 came later in the evolution of the Illumina
system.

www.manaraa.com

100

Figure 4.1 Measurement of errors in Illumina data from a single raw Illu-
mina run. For each position in the read, we chart the observed
error under three conditions. We chart the percentage of am-
biguous calls under the condition there is an ambiguous call
earlier in the sequence as the top line. We chart the percentage
of ambiguous calls for all sequences as the middle line. We chart
the percentage of ambiguous calls under the condition that there
are no ambiguous calls in earlier positions as the bottom line.

base call is ambiguous at a particular position, given some ambiguous base call in a previous

position?

As shown in Fig. 4.1, the conditional probability that a base is ambiguous if we have

previously seen an ambiguous base is high in Illumina data. Conversely, the probability that

a base is ambiguous given that all previous bases are unambiguous remains low across all

positions. From this data, we can infer that once an ambiguous base call is made, whatever

condition that initiated this state remains in effect for the remainder of the base calls, causing

the rest of the sequence to be unreliable. At the same time, the sequence before this switchover

point is of high quality. For this reason, we see the benefit of trimming Illumina data after the

quality has degraded.

4.3 Transcriptome Assembly

We generated synthetic data from the genic regions of maize, predicted using FGENESH

v.2.6 (using the monocots matrix) on the previously assembled maize genomic islands [14].

We used 61,428 gene structures to generate simulated high coverage transcriptome data. Each

www.manaraa.com

101

k Nodes Edges Compacted Reduced

20 20,537,274 20,658,206 451,718 338,121

25 20,717,553 20,741,818 205,858 149,018

30 20,758,869 20,764,256 154,965 114,028

Table 4.1 The effect of varying k on graph size. We show the number of
nodes in the initial de Bruijn graph, the number of edges in the
initial de Bruijn graph, the number of compacted edges in the
k-string graph, and the number of reduced edges in the k-string
graph, after graph simplification.

gene was sampled at a random coverage between 50x and 1000x using read lengths of 30 to 50

base pairs, resulting in a data set of 925 million reads and 40 billion bases.

We analyzed the effect of varying k on the resulting compacted graph size and hence the

quality of the resulting contigs, as shown in Table 4.3. As we increase k, we see a significant

reduction in the number of final contigs produced by our algorithm, from 338,000 for k = 20

to 114,000 for k = 30. While the relative difference in the number of unique k-mers does not

change much while varying k, the absolute difference in the number of unique k-mers is similar

to the absolute difference in the output size, which is significant.

Producing long and correctly assembled contigs that cover most of the genome is the

hallmark of a good assembler. When validating genome assemblies, we use the nX length

measure, which is the maximum length l such that X percent of the genome is covered by

contigs with length at least l. When describing a transcriptome reconstruction, we use a

slightly different metric. Instead of the nX score, we measure how well contigs of length

X or greater cover the reference genes, but only for genes of length X or longer. We make

this modification because only a subset of the reference genes has lengths greater than X, so

certainly we will fail to produce a contig of that length for that gene.

For k = 30 there were approximately two contigs per reference gene. For validation, we used

the BLAST tool to align the assembled contigs to the reference. We post-processed the BLAST

results to verify that each contig fully aligned to some predicted gene in the reference. Our

www.manaraa.com

102

analysis showed that 92% of the contigs correctly aligned back to the reference. The remaining

contigs are the result of over-collapsing edges during graph manipulation. Improving this result

is an area of ongoing research. We found that approximately 38% of the applicable reference

was covered by contigs with length greater than 500. The maximum length contig was 4017.

The maximum length gene in the reference was 5704.

4.4 Genome Assembly

4.4.1 Synthetic Data

We experimentally evaluated the proposed method using synthetic data generated from

previously assembled genomes, downloaded from the NCBI FTP server. For each genome, we

cleaned any ambiguities from the data and concatenated any contigs from the same chromo-

some, in the order presented in the finished FASTA file. In this way, we generate a contiguous

sequence for each chromosome even though the actual data may contain a large number of

contigs, possibly scaffolded. From the input chromosomes, we then generated fragments and

sampled 30bp to 50bp paired short reads from the ends of the fragments. We used a 0.9%

substitution rate and 0.1% deletion rate, for a total error rate of 1%. Fragment sizes were

based upon two hypothetical experimental protocols. Protocol I consisted of two fragment

types, {900±100, 4300±600}. Protocol II consisted of five fragment types{330±30, 660±60,

1100± 100, 2200± 200, 4400± 400}. All genomes were sampled at 300-fold coverage.

For validation, we used MUMmer 3.20 [36] to align the finished contigs back to the reference.

We choose MUMmer, which uses a suffix tree to quickly seed sequence alignments, primarily

because of its speed. Finding all alignments between assembled contigs and a bacterial reference

takes under a minute.

The results are presented in Table 4.4.1. We present results on three bacterial genomes

as a reference point for comparison with other work on short read assembly. In addition, we

present results on S. cerevisiae and D. melanogaster. For each genome, we present the length

of the maximum contig generated, along with n50, n75 and n90 lengths. We also present the

number of contigs with length > 10Kb, the percentage of the genome that is covered by these

www.manaraa.com

103

Organism Size Max n50 n75 n90 Count Mis Cov

E. coli 5.4 224 85 43 10 91 0.2 90.0

S. cerevisiae 12.2 225 71 34 11 225 0.8 90.1

C. pneumoniae 1.0 867 867 867 132 2 0.0 99.9

S. pneumoniae 2.1 321 137 92 77 19 0.0 95.5

E. coli 5.4 378 231 104 42 42 0.5 94.0

S. cerevisiae 12.2 290 107 75 25 148 0.8 94.1

D. melanogaster 120.3 855 102 43 12 1,687 1.5 91.2

Table 4.2 Assembly quality for five organisms. The first group shows re-
sults for sequences using Protocol I, as described in the text.
The second group was assembled from data matching Protocol
II. In order, we show the size of the genome in megabases; the
maximum, n50, n75, and n90 lengths, all in kilobases; the num-
ber of contigs with length > 10Kb, the number of misassemblies
per megabase, and percentage of the genome covered by these
contigs at > 99.9% identity.

contigs with at least 99.9% identity, and the number of large-scale misassemblies per megabase.

Approximately four out of five assembled contigs aligned perfectly to the reference.

For testing the assembler, data was generated on a workstation, using the parameters

described above. This data was then transferred to a 512-node Blue Gene/L system with 512

MB memory per node, at which point the parallel phases of the software were run to produce the

intermediate string graph and features from paired reads. These results were transferred back

to a workstation for production of contigs using bidirected graph traversal. For Drosophila, this

process took ∼50 minutes for data transfer (depending on network congestion), ∼100 minutes

for the parallel phases, and ∼20 minutes for the remaining. In the local processing phase of

the algorithm, the running time was dominated by file I/O.

4.4.2 Experimental Data

For comparing our results with those produced by other short sequence assemblers, we

downloaded the E. coli Illumina data set (Accession SRX000429) used to benchmark previous

sequence assemblers in [60]. The data consisted of paired E. coli reads, with an insertion length

www.manaraa.com

104

Assembler ≥ 100 Cov n50 Max Mis

OurName 217 98.47 45,592 126,490 758,880

Abyss 233 99.44 45,362 173,852 432,276

Velvet 286 99.81 54,359 164,194 471,204

EULER-SR 216 99.76 57,497 174,041 984,438

SSAKE 931 99.99 11,450 50,668 223,478

Edena 680 99.00 16,430 67,082 79,620

Table 4.3 A comparison of short sequence assemblers, using a 300x cover-
age Illumina data set with read length 36 and insertion length
200.

of approximately 200 bases. We give a comparison of our assembler to assemblies produced.

We can see in Table 4.4.2 that our assembler achieves a result on par with the ABySS short

sequence assembler, and is roughly equivalent to the results obtained by the best assemblers,

with the benefit that the solution scales to larger problem sizes.

4.5 Performance Results

While we are most interested in utilizing the large, distributed memory of high performance

computers to enable the assembly of large genomes, for completeness we tested the scalability

of the implementation. We tested varying the number of processors from 16 to 256 on an IBM

Blue Gene/L supercomputer [18] named CyBlue. We ran the assembler with k = 27 on an

experimental E. coli data set downloaded from the NCBI short read archive.

As we use a very structured approach to parallel processing, the scalability testing is really

a test of the scalability of the all-to-all implementation and parallel I/O on Blue Gene. The

CyBlue system uses the IBM General Parallel File System (GPFS) [54] connected to the

system via a single communication pipe, and a three dimensional torus interconnect for all-to-

all communication. We ran the system in coprocessor mode, in which a single processor per

machine node handles computation and a second processor handles communication. We would

expect the following factors to interact in producing the speedup numbers we see.

• The number of processors reading concurrently from the parallel file system doubles.

www.manaraa.com

105

p Init Read Con Wr Clean Wr Pairs Wr Tot -Wr Per

16 5 469 49 106 23 30 3369 3 4,054 3,915 4,054

32 11 294 26 155 22 45 1760 10 2,323 2,113 2,027

64 11 179 14 62 89 88 910 1 1,354 1,203 1,013

128 9 120 7 59 37 32 390 1 655 563 507

256 13 101 3 104 4 70 190 11 496 311 253

Table 4.4 Running time of the parallel assembler in seconds, broken down
by stage of the algorithm. From left to right the columns are: p:
the number of processors, Init: initialization time, from program
startup to initial read, Read: read the (k+1)-molecules from the
data file, Con: construct graph tuples and compact edges in the
graph, Wr: write graph information, Clean: perform error cor-
rection by graph editing, Wr: write graph information, Pairs:
read paired information and create clusters, Wr: write clusters,
Tot: total running time, -Wr: total running time without write
phases, and Per: perfect speedup.

• The total communication load on the network remains constant, while the load per

processor halves.

• The number of processors communicating concurrently doubles.

• The number of processors reading concurrently from the parallel file system doubles.

• The amount of total available memory doubles, halving the number of stages needed to

process the input data.

• The number of tuples per processor halves, reducing the log factor in the quick sort

implementation by 1.

• The number of processors writing concurrently to the parallel file system doubles.

We timed each stage of the algorithm individually and present the results in Table 4.5.

As we show in the table, the CyBlue system achieved reasonable scaling on all factors in the

above decomposition, save parallel file write, which seemed to slow significantly as we increased

the number of processors. The stages of the algorithm not involved with writing achieved a

www.manaraa.com

106

respectable 12.6 speedup factor in our testing when increasing the number of processors by a

factor of 16.

www.manaraa.com

107

CHAPTER 5. CONCLUSION

In this work, we have described a parallel short sequence assembler and demonstrated

the validity of novel assembly methods by assembling both experimental and synthetic short

sequence data. As we summarized our contributions in the introductory chapter, we will

conclude with eight problems that follow from our research.

Problem 1: Assembly presentation. In our discussion of assembly, we presented as our

answer a set of contigs, the traditional presentation. By choosing such a presentation, we

ignore information. For example, given a contig C, we might know that C is followed by some

contig from a set S and preceded by some contig from a set P; we have not however, discovered

the specific contig from these sets. As another example, given a query Q, we can answer the

question, “Does Q exist in the genome?” even if Q is not a submolecule of some assembled

contig, by looking for a path labeled with Q in the graph. These two examples show the

limitations of thinking of an assembly of an unknown genome as a set of contigs. Perhaps the

reason we choose to represent the assembly as a set of contigs is that this representation is easy

and intuitive. Finding a more complicated and more complete way to present the assembly of

an unknown genome is interesting open problem in sequence assembly.

Problem 2: Integration of coverage information and paired read information for transcrip-

tome assembly and metagenomics. In Section 3.1 when we described transcriptome assembly,

we hinted at an interesting problem in processing the loop reduction rule due to alternative

splicing in eukaryotes. The alternative splicing problem takes a set of reads from a transcrip-

tome and asks us to identify all alternative splicings of each gene as expressed in the data.

It is likely that this problem becomes easier with paired read information, but making use of

paired reads to answer the problem requires combining coverage information with paired read

www.manaraa.com

108

processing. This combination and heuristics (or a formulation as an optimization problem)

remain an open problem.

The combination of differential coverage and paired read information will likely be necessary

in the successful processing of metagenomics data. A metagenomics data set contains read

information from a set of organisms rather than a single organism, for example the set of

bacteria residing in the gut or in a water sample [5]. Within this set, sometimes called a

metagenome, organisms will be present at differing frequencies, as is the case for genes in

transcriptome data. For example, in a metagenomics study done using a sample from the

Sargosa Sea, 1,800 species of microorganism were present a sequences sample with 50-75 of the

organisms sequenced at coverages that ranged from 1-fold to 30-fold [65]. A combination of

coverage and paired reads will likely be needed to achieve an assembly of metagenomics data;

Additionally, work related to Problem 1 will be needed to present the results.

Problem 3: Using genetic and physical maps during assembly. Genetic maps, physical

maps, and optical maps have previously been used in sequence assembly for creating BAC tiling

paths used in hierarchical assembly, for scaffolding contigs, or for independently verifying the

assembly. Integrating the information in the genetic or physical map during the assembly

process itself, as another traversal constraint, might form an interesting problem to solve.

Problem 4: Parallel algorithms for the spectral alignment problem for distributed memory

machines. We described the spectral alignment problem in Section 2.7. For the spectral

alignment problem we are given a set of k-molecules present in a genome (the k-spectrum of

that genome), and wish to, for each read in the data set, find the shortest sequence of edits

that will transform that read into a read such that each k length submolecule of the read is in

the k-spectrum. By presenting parallel methods for error correction, we have given a parallel

method for discovering the k-spectrum of an unknown genome. Recently, a method for solving

the spectral alignment problem using GPUs was presented [58]. Solving the spectral alignment

problem on distributed memory machines remains and interesting open problem to solve.

Problem 5: Optimal experimental design for de novo assembly. While our results indicate

that having a data set with multiple insertion lengths is better than having data with a single

www.manaraa.com

109

insertion length, we have not performed experimental analysis of what the best choice of insert

length(s) might be. One would expect to want an insert length for every distance between the

read length l and the genome length g given infinite coverage. However with finite coverage

each additional insertion length dilutes the amount of data allocated to each length, which in

turn reduces the covered range for a particular pair of edges (the quality of the (k + 1)-pair

cluster. The best choice might change from organism to organism. It might change for different

coverage levels. A thorough exploration of the possibilities using synthetically generated data

could inform the design of real sequencing projects.

Problem 6: Parallel k-string graph traversal. We give parallel methods for constructing

and manipulating the k-string graph and give a parallel method for processing paired reads

and finding a set of summary features. We then perform the final phase of the assembler, graph

traversal, using a serial traversal algorithm. Parallelizing the final stage of the assembler is an

open problem. A straightforward approach to solving this problem would be to do a number of

traversals using different seeds concurrently and then combining the results, although a more

complicated way to distribute the work of traversal might be found.

Problem 7: Assembly with heterogeneous reads. In our experimental results section, we

present the assembly of both synthetic and experimental Illumina reads. While it seems likely

that we could easily adapt the assembler to make use of heterogeneous reads, we have not yet

explored this possibility, either with synthetic or experimental data.

Problem 8: Quality score awareness. We consider the reads as a set of strings and, except

for the initial trimming, ignore the quality scores. We chose this approach because including

quality scores for each position throughout the assembly pipeline makes certain aspects of the

assembler more difficult to design. For example, summarizing all k-molecules seen in the data

with a single count is no longer possible; we would instead have to summarize the quality score

at each position in some way.

We could consider quality scores in the assembly at two points, during the determination

of the k-spectrum of the genome or metagenome or during sequence editing. One would watch

for systematically low quality scores at a specific motif in the data. We might find quality

www.manaraa.com

110

scores particularly useful when processing very low coverage genomes, like low copy genes in

transcriptomes or low copy genomes in metagenomes.

These eight problems demonstrate that sequence assembly, while an old problem, remains

an evolving one, much like the genomes we attempt to reconstruct. Our presentation of a

parallel short read assembler for de novo genome reconstruction is a step in the continuing

process of finding good methods to solve this problem, which we hope serves as a basis for

continued advances in this field.

www.manaraa.com

111

Bibliography

[1] S.F. Altschul, W. Gish, W. Miller, and M. Myers. Basic local alignment search tool.

Journal of Molecular Biology, 215:403–410, 1990.

[2] S. Batzoglou, D.B. Jaffe, K. Stanley, J. Butler, S. Gnerre, E. Mauceli, B. Berger, J.P.

Mesirov, and E.S. Lander. ARACHNE: a whole-genome shotgun assembler. Genome

Research, 12:177–189, 2002.

[3] S. Bennet. Solexa ltd. Pharmacogenomics, 5(4):433–438, 2004.

[4] D.R. Bentley, S. Balasubramanian, H.P. Swerdlow, and G.P. Smith. Accurate whole

human genome sequencing using reversible terminator chemistry. Nature, 456:53–59, 2008.

[5] M. Breitbart, P. Salamon, B. Andresen, J.M. Mahaffy, A.M. Segall, D. Mead, F. Azam,

and F. Rohwer. Genomic analysis of uncultured marine viral communities. Proceedings

of the National Academy of the Sciences, 99:14250 – 14255, 2002.

[6] J. Butler, I. MacCallum, M. Kleber, I.A. Shlyakhter, M.K. Belmonte, E.S. Lander, C.N.

Nusbaum, and D.B. Jaffe. ALLPATHS: De novo assembly of whole-genome shotgun

microreads. Genome Research, 18:810–820, 2008.

[7] M.J. Chaisson and P.A. Pevzner. Short fragment assembly of bacterial genomes. Genome

Research, pages 18:324–330, 2008.

[8] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters.

In Proceedings of the 6th Symposium on Operating System Design and Implementation,

page 10, 2004.

www.manaraa.com

112

[9] F. Dehne and S.W. Song. Randomized parallel list ranking for distributed memory mul-

tiprocessors. In Asian Computing Science Conference, pages 1–10, 1996.

[10] R. Dementiev, L. Kettner, and P. Sanders. STXXL: standard template library of XXL

data sets. Software: Practice and Experience, 38:589–637, 2007.

[11] I.M. Dew, B. Walenz, and G. Sutton. A tool for analyzing mate pairs in assemblies

(TAMPA). Journal of Computational Molecular Biology, 12:497–513, 2005.

[12] J.C. Dohm, C. Lottaz, T. Borodina, and H. Himmelbauer. SHARCGS, a fast and highly

accurate short-read assembly algorithm for de novo genomic sequencing. Genome Re-

search, 17:1697–1706, 2007.

[13] A. Edwards, H. Voss, P. Rice, A. Civitello, J. Stegemann, C. Schwager, J. Zimmerman,

H. Erfle, C.T. Caskey, and W. Ansorge. Automated DNA sequencing of the human HPRT

locus. Genomics, 6:593–608, 1990.

[14] S. Emrich, S. Aluru, Y. Fu, T. Wen, M. Narayanan, L. Guo, D. Ashlock, and P.S. Schnable.

A strategy for assembling the maize (zea mays l.) genome. Bioinformatics, 20:140 – 147,

2004.

[15] B. Ewing and P. Green. Base-calling of automated sequencer traces using phred. Genome

Research, 8:186–194, 1998.

[16] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Dongarra,

Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew Lums-

daine, Ralph H. Castain, David J. Daniel, Richard L. Graham, and Timothy S. Woodall.

Open MPI: Goals, concept, and design of a next generation MPI implementation. In

Proceedings, 11th European PVM/MPI Users’ Group Meeting, pages 97–104, Budapest,

Hungary, September 2004.

[17] J. Gallant, D. Maier, and J.A. Storer. On finding minimal length superstrings. Journal

of Computer and System Sciences, 20(1):50–58, 1983.

www.manaraa.com

113

[18] A. Gara, M.A. Blumrich, D. Chen, G.L.T. Chiu, and P. Coteus. Overview of the Blue

Gene /L system archetecture. IBM Journal of Research and Development, 49(2), 2005.

[19] P. Green. Documentation for Phrap. Technical report, Genome Center, University of

Washington, 1996.

[20] P. Havlak, R. Chen, K.J. Durbin, A. Egan, and Y. Ren. The atlas genome assembly

system. Genome Research, 14:721–731, 2003.

[21] D.R. Helman, J. Ja’Ja’, and D.A. Bader. A new deterministic parallel sorting algorithm

with an experimental evaluation. Technical Report CS-TR-3670 and UMIACS-TR-96-54,

College Park, MD, 1996.

[22] D. Hernandez, P. Francois, L. Farinelli, M. Osteras, and J. Schrenzel. De novo bacte-

rial genome sequencing: Millions of very short reads assembled on a desktop computer.

Genome Research, 18:802–809, 2008.

[23] S. Hossain, N. Azimi, and S. Skiena. Crystallizing short-read assemblies around lone

Sanger reads. Bioinformatics, 2009.

[24] X. Huang and A. Madan. CAP3: A whole-genome assembly program. Genome Research,

9:868–877, 1999.

[25] X. Huang, J. Wang, S. Aluru, and S.P. Yang. PCAP: A whole-genome assembly program.

Genome Research, 13(9):2164–2170, 2003.

[26] R.M. Idury and M.S. Waterman. A new algorithm for DNA sequence assembly. Journal

of Computational Biology, 2:291–306, 1995.

[27] B.G. Jackson and S. Aluru. Parallel construction of bidirected string graphs for genome

assembly. In Proc. 37th International Conf. on Parallel Processing, pages 346–353, 2008.

[28] B.G. Jackson, S. Aluru, and P.S. Schnable. Consensus genetic maps: A graph theoretic

approach. In Proc. 5th Annual Computational Systems Bioinformatics Conf., pages 35–45,

2005.

www.manaraa.com

114

[29] B.G. Jackson, P.S. Schnable, and S. Aluru. Consensus genetic maps as median orders from

inconsistent sources. IEEE/ACM Trans. on Computational Biology and Bioinformatics,

5:161–171, 2008.

[30] B.G. Jackson, P.S. Schnable, and S. Aluru. Assembly of large genomes from paired short

reads. In Proc. 1st International Conference on Bioinformatics and Computational Biol-

ogy, volume 5462, pages 30–43, 2009.

[31] B.G. Jackson, P.S. Schnable, and S. Aluru. Parallel short sequence assembly of transcrip-

tomes. BMC Bioinformatics, 10:S14, 2009.

[32] B.N. Jackson and S. Aluru. Pairwise Sequence Alignment, page Chapter 1. 2006.

[33] D.B. Jaffe, J. Butler, S. Gnerre, E. Mauceli, K. Lindblad-Toh, , J.P. Mesirov, M.C. Zody,

and E.S. Lander. Whole-genome sequence assembly for mammalian genomes: Arachne 2.

Genome Research, 13:91–96, 2003.

[34] R.M. Karp. Reducibility among combinatorial problems. In R.E. Miller and J.W.

Thatcher, editors, Complexity and Computer Computations, pages 85–103. 1972.

[35] J.D. Kececioglu and E.W. Myers. Combinatorial algorithms for DNA sequence assembly.

Algorithmica, 13(1/2):7–51, 1995.

[36] S. Kurtz, A. Phillippy, A.L. Delcher, M. Smoot, M. Shumway, C. Antonescu, and S.L.

Salzberg. Versatile and open software for comparing large genomes. Genome Biology, 5,

2004.

[37] X. Li, P. Lu, J. Schaeffer, J. Shillington, P.S. Wong, and H. Shi. On the versatility of

parallel sorting by regular sampling. Parallel Computing, 19(10):1079–1103, 1993.

[38] M. Margulies and M. Egholm. Genome sequencing in open microfabricated high density

picoliter reactors. Nature, 437(7054):376–380, 2005.

[39] A.J. Matlin, F. Clark, and C.W.J. Smith. Understanding alternative splicing: towards a

cellular code. Nature Reviews, 6:386–398, 2005.

www.manaraa.com

115

[40] P. Medvedev and M. Brudno. Ab initio whole genome shotgun assembly with mated short

reads. In Lecture Notes in Computer Science, volume 4955, pages 50–64, 2008.

[41] P. Medvedev, K. Georgiou, G. Myers, and M. Brudno. Computability of models for

sequence assembly. Lecture Notes in Computer Science, 4645:289–301, 2007.

[42] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge Press, New York, NY,

USA, 1995.

[43] E.W. Myers. Toward simplifying and accurately formulating fragment assembly. Journal

of Computational Biology, 2:275–90, 1995.

[44] E.W. Myers. The fragment assembly string graph. Bioinformatics, 21:ii79–ii85, 2005.

[45] E.W. Myers, G.G. Sutton, A.L. Delcher, and I.M. Dew. A whole-genome assembly of

drosophilia. Science, 287(5461):2196–2204, 2000.

[46] S. Ossowski1, K. Schneeberger1, R.M. Clark, C. Lanz, N. Warthmann, and D. Weigel.

Sequencing of natural strains of arabidopsis thaliana with short reads. Genome Research,

preprint, 2008.

[47] V. Pandey, R.C. Nutter, and E. Prediger. Applied Biosystems SOLiD System: Ligation-

Based Sequencing. Wiley, 2008.

[48] P.A. Pevzner and H. Tang. Fragment assembly with double-barreled data. Bioinformatics,

21:S225–S233, 2001.

[49] P.A. Pevzner, H. Tang, and G. Tesler. De novo repeat classification and fragment assembly.

Genome Research, 14:1786–96, 2004.

[50] P.A. Pevzner, H. Tang, and M.S. Waterman. An eulerian path approach to dna fragment

assembly. Proceedings of the National Academy of Sciences, 98(17):9748–9753, 2001.

[51] M. Ronaghi. Pyrosequencing sheds light on DNA sequencing. Genome Research, 11:3–11,

2001.

www.manaraa.com

116

[52] J.J. Ruan, C.W. Fuller, A.N. Glazer, and R.A. Mathies. Flourescence energy transfer dye-

labeled primers for DNA sequencing and analysis. Proceedings of the National Academy

of Sciences, 95:4347–4351, 1995.

[53] F. Sanger, S. Niclen, and A.R. Coulson. DNA sequencing with chain-terminating in-

hibitors. Proceedings of the National Academy of Sciences, 74:5463–5467, 1977.

[54] F. Schmuck and R. Haskin. GPFS: A shared-disk file system for large computing clusters.

In Proceedings of the FAST’02 Conference on File and Storage Technologies, 2002.

[55] R.V. Shankar and S. Ranka. Random data accesses on a coarse-grained parallel ma-

chine. II. one-to-many and many-to-one mappings. Journal of Parallel and Distributed

Computing, 44(1):24–34, 1997.

[56] J. Shendure, G.J. Porreca, N.B. Reppas X. Lin, J.P. McCutcheon, A.M. Rosenbaum, M.D.

Wang, K. Zhang, R.D. Mitra, and G.M. Church. Accurate multiplex polony sequencing

of an evolved bacterial genome. Genome Research, 309:1723–1732, 2005.

[57] H. Shi and J. Schaefer. Parallel sorting by regular sampling. Journal of parallel and

distributed computing, 14(4):361–372, 1992.

[58] H. Shi, B. Schmidt, W. Liu, and W. Mller-Wittig. Accelerating error correction in high-

throughput short-read DNA sequencing data with CUDA. In Proceedings of the 8th IEEE

International Workshop on High Performance Computational Biology, 2009.

[59] J.F. Sibeyn, F. Guillaume, and T. Seidel. Practical parallel list ranking. Journal of

Parallel and Distributed Computing, 56:156–180, 1999.

[60] J.T. Simpson, K. Wong, S.D. Jackman, J.E. Schein, S.J. Jones, and I. Birol. ABySS: a

parallel assembler for short read sequence data. Genome Research, Preprint, 2009.

[61] M.B. Soares, M.F. Bonaldo, P. Jelene, L. Su, L. Lawton, and A. Efstratiadis. Proceeding

of the National Academy of the Sciences, 91:9228–9232, 1994.

www.manaraa.com

117

[62] A. Sundquist, M. Ronaghi, H. Tang, P. Pevzner, and S. Batzoglou. Whole-genome se-

quencing and assembly with high-throughput, short read technologies. PLoS ONE, 2:e484,

2007.

[63] G.G. Sutton, O. White, M.D. Adams, and A.R. Kerlavage. TIGR assembler: A new

tool for assembling large shotgun sequencing projects. Genome Science and Technology,

1:9–19, 1995.

[64] R. Thakur, R. Rabenseifner, and W. Gropp. Optimization of collective communication op-

erations in MPICH. International Journal of High Performance Computing Applications,

pages 49–66, 2005.

[65] J.C. Venter, K. Remington, J.F. Heidelberg, A.L. Halpern, and D. Rusch. Environmental

genome shotgun sequencing of the sargasso sea. Science, 304:66 – 74, 2004.

[66] J. Wang, W. Wang, R. Li, and Y. Li. The diploid genome sequence of an Asian individual.

Nature, 456:60–65, 2008.

[67] R.L. Warren, G.G. Sutton, S.J.M. Jones, and R.A. Holt. Assembling millions of short

DNA sequences using SSAKE. Bioinformatics, 23:500–501, 2007.

[68] D.L. Wheeler, T. Barrett, D.A. Benson, S.H. Bryant, K. Canese, V. Chetvernin, D.M.

Church, M. Dicuccio, R. Edgar, S. Federhen, M. Feolo, L.Y. Geer, W. Helmberg, Y. Ka-

pustin, O. Khovayko, D. Landsman, D.J. Lipman, T.L. Madden, D.R. Maglott, V. Miller,

J. Ostell, K.D. Pruitt, G.D. Schuler, M. Shumway, E. Sequeira, S.T. Sherry, K. Sirotkin,

A. Souvorov, G. Starchenko, R.L. Tatusov, T.A. Tatusova, L. Wagner, and E. Yaschenko.

Nucleic Acids Research, 36:D13–D21, 2008.

[69] T. Wicker, A. Narechania, F. Sabot, G.T.H. Vu, A. Graner, D. Ware, and N. Stein. Low-

pass shotgun sequencing of the barley genome facilitates rapid identification of genes,

conserved non-coding sequences and novel repeats. BMC Genomics, 9:518, 2008.

www.manaraa.com

118

[70] Business Wire. Helicos biosciences enters molecular diagnostics collaboration with

renowned research center to sequence cancer-associated genes. Genetic Engineering and

Biotechnology News, 2008.

[71] D. Zerbino and E. Birney. Velvet: Algorithms for de novo short read assembly using de

Bruijn graphs. Genome Research, 18:821–829, 2008.

www.manaraa.com

119

ACKNOWLEDGEMENTS

I would like to use some space to acknowledge a number of people who have helped me,

either directly or indirectly, with the presented work.

I would like to thank the Multidisciplinary Graduate Educational Training (MGET) Pro-

gram, the National Science Foundation (NSF CNS-0521568), the Binational Agricultural Re-

search and Development Program (Project US-3873-06), and the Plant Sciences Institute In-

novative Research Grants Program for funding my graduate education.

I would like to thank Professor Srinivas Aluru for his guidance. His success is a testament

to his wisdom, inteligence, and tenacity, and I can only hope that I have absorbed some of

these traits during our six year association. I thank him for supporting my work and for his

efforts in establishing the collaborations antecedent to this work’s success. He was willing to

work late hours as deadlines approached and has a keen editorial eye. I would also like to

thank his wife, Maneesha, for this.

I would like to thank Patrick S. Schnable for contributing to the collaborative environment

that served as the germ of my work. As a Biologist who also enjoys Mathematics and Statistics

(and does not even mind Computer Science), he served as a great sounding board and source

of ideas.

I would like to thank Henry B. Grant for giving me “Ludwig Wittgenstein: The Duty of

Genius” by Ray Monk because “a person shouldn’t receive a Doctorate of Philosophy without

having read at least one philosopher.”

I would like to thank Scott J. Emrich for making sure I had seen the latest and greatest

sequence assembly paper.

I would like to thank Jaroslaw Zola for his feedback when designing my software and his

www.manaraa.com

120

wife Olga for providing invaluable help in debugging templatized C++.

I would like to thank Xiao Yang and Chad Brewbaker for working on the maize validation

project with me, briefly mentioned in this work. Chad’s idea for displaying overlap graphs

using a force directed layout algorithm was fun.

I would like to thank Pang Ko for being my climbing buddy as we failed to scale the optimal

distributed suffix tree construction mountain (and for challenging my red pepper tolerance).

I would like to thank Chad Brewbaker, Jason Stanek, Scott Emrich, Anantharaman Kalya-

naraman, Pang Ko, John Mathews, Olga Nikolova, Sarah Orley, Abhinav Sarje, Sudip Seal,

Stephan Rajko, Andre Wehe, and Xiao Yang for listening to my presentations, giving me

feedback on my work, and being good friends.

I would like to thank my parents Charles and Barbara Jackson for buying a computer

when I was a child. I can still remember composing simple BASIC programs, replete with line

numbers. I might have passed on Computer Science without this influence.

I would like to thank my brother Richard Jackson for listening to the psychosis of a Ph.D.

student for the five years we lived together during my graduate studies. I would also like to

thank the rest of my siblings, my extended family, and my friends for forgetting to ask me

when I would graduate.

Finally, I would like to thank my wife Adrianna for enduring life as a thesis widow for the

period of approximately one year. Thank you dear, with love.

	2009
	Parallel methods for short read assembly
	Benjamin Grant Jackson
	Recommended Citation

	Figure1d.ps

